Improved Vocal Effort Transfer Vector Estimation for Vocal Effort-Robust Speaker Verification

Despite the maturity of modern speaker verification technology, its performance still significantly degrades when facing non-neutrally-phonated (e.g., shouted and whispered) speech. To address this issue, in this paper, we propose a new speaker embedding compensation method based on a minimum mean s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: López-Espejo, Iván, Prieto, Santi, Ortega, Alfonso, Lleida, Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator López-Espejo, Iván
Prieto, Santi
Ortega, Alfonso
Lleida, Eduardo
description Despite the maturity of modern speaker verification technology, its performance still significantly degrades when facing non-neutrally-phonated (e.g., shouted and whispered) speech. To address this issue, in this paper, we propose a new speaker embedding compensation method based on a minimum mean square error (MMSE) estimator. This method models the joint distribution of the vocal effort transfer vector and non-neutrally-phonated embedding spaces and operates in a principal component analysis domain to cope with non-neutrally-phonated speech data scarcity. Experiments are carried out using a cutting-edge speaker verification system integrating a powerful self-supervised pre-trained model for speech representation. In comparison with a state-of-the-art embedding compensation method, the proposed MMSE estimator yields superior and competitive equal error rate results when tackling shouted and whispered speech, respectively.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2809299495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809299495</sourcerecordid><originalsourceid>FETCH-proquest_journals_28092994953</originalsourceid><addsrcrecordid>eNqNjUELgjAYhkcQJOV_-KCzsDYtdw6jriXeQqZtMFNn32a_P5Eu3Tq9h-d5eBckYJzvojRmbEVC5xpKKdsfWJLwgNwv3YD2rR5Q2Fq2kGlt0UOOsndaIRSq9hYhc9500hvbw8R_3Ohqq9F5uA1KPucCjTb1LG_IUsvWqfC7a7I9ZfnxHE2fr1E5XzZ2xH5CJUupYELEIuH_WR8V4UQG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809299495</pqid></control><display><type>article</type><title>Improved Vocal Effort Transfer Vector Estimation for Vocal Effort-Robust Speaker Verification</title><source>Free E- Journals</source><creator>López-Espejo, Iván ; Prieto, Santi ; Ortega, Alfonso ; Lleida, Eduardo</creator><creatorcontrib>López-Espejo, Iván ; Prieto, Santi ; Ortega, Alfonso ; Lleida, Eduardo</creatorcontrib><description>Despite the maturity of modern speaker verification technology, its performance still significantly degrades when facing non-neutrally-phonated (e.g., shouted and whispered) speech. To address this issue, in this paper, we propose a new speaker embedding compensation method based on a minimum mean square error (MMSE) estimator. This method models the joint distribution of the vocal effort transfer vector and non-neutrally-phonated embedding spaces and operates in a principal component analysis domain to cope with non-neutrally-phonated speech data scarcity. Experiments are carried out using a cutting-edge speaker verification system integrating a powerful self-supervised pre-trained model for speech representation. In comparison with a state-of-the-art embedding compensation method, the proposed MMSE estimator yields superior and competitive equal error rate results when tackling shouted and whispered speech, respectively.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Compensation ; Embedding ; Performance degradation ; Principal components analysis ; Speech ; Verification</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>López-Espejo, Iván</creatorcontrib><creatorcontrib>Prieto, Santi</creatorcontrib><creatorcontrib>Ortega, Alfonso</creatorcontrib><creatorcontrib>Lleida, Eduardo</creatorcontrib><title>Improved Vocal Effort Transfer Vector Estimation for Vocal Effort-Robust Speaker Verification</title><title>arXiv.org</title><description>Despite the maturity of modern speaker verification technology, its performance still significantly degrades when facing non-neutrally-phonated (e.g., shouted and whispered) speech. To address this issue, in this paper, we propose a new speaker embedding compensation method based on a minimum mean square error (MMSE) estimator. This method models the joint distribution of the vocal effort transfer vector and non-neutrally-phonated embedding spaces and operates in a principal component analysis domain to cope with non-neutrally-phonated speech data scarcity. Experiments are carried out using a cutting-edge speaker verification system integrating a powerful self-supervised pre-trained model for speech representation. In comparison with a state-of-the-art embedding compensation method, the proposed MMSE estimator yields superior and competitive equal error rate results when tackling shouted and whispered speech, respectively.</description><subject>Compensation</subject><subject>Embedding</subject><subject>Performance degradation</subject><subject>Principal components analysis</subject><subject>Speech</subject><subject>Verification</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUELgjAYhkcQJOV_-KCzsDYtdw6jriXeQqZtMFNn32a_P5Eu3Tq9h-d5eBckYJzvojRmbEVC5xpKKdsfWJLwgNwv3YD2rR5Q2Fq2kGlt0UOOsndaIRSq9hYhc9500hvbw8R_3Ohqq9F5uA1KPucCjTb1LG_IUsvWqfC7a7I9ZfnxHE2fr1E5XzZ2xH5CJUupYELEIuH_WR8V4UQG</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>López-Espejo, Iván</creator><creator>Prieto, Santi</creator><creator>Ortega, Alfonso</creator><creator>Lleida, Eduardo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230704</creationdate><title>Improved Vocal Effort Transfer Vector Estimation for Vocal Effort-Robust Speaker Verification</title><author>López-Espejo, Iván ; Prieto, Santi ; Ortega, Alfonso ; Lleida, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28092994953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Compensation</topic><topic>Embedding</topic><topic>Performance degradation</topic><topic>Principal components analysis</topic><topic>Speech</topic><topic>Verification</topic><toplevel>online_resources</toplevel><creatorcontrib>López-Espejo, Iván</creatorcontrib><creatorcontrib>Prieto, Santi</creatorcontrib><creatorcontrib>Ortega, Alfonso</creatorcontrib><creatorcontrib>Lleida, Eduardo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Espejo, Iván</au><au>Prieto, Santi</au><au>Ortega, Alfonso</au><au>Lleida, Eduardo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improved Vocal Effort Transfer Vector Estimation for Vocal Effort-Robust Speaker Verification</atitle><jtitle>arXiv.org</jtitle><date>2023-07-04</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Despite the maturity of modern speaker verification technology, its performance still significantly degrades when facing non-neutrally-phonated (e.g., shouted and whispered) speech. To address this issue, in this paper, we propose a new speaker embedding compensation method based on a minimum mean square error (MMSE) estimator. This method models the joint distribution of the vocal effort transfer vector and non-neutrally-phonated embedding spaces and operates in a principal component analysis domain to cope with non-neutrally-phonated speech data scarcity. Experiments are carried out using a cutting-edge speaker verification system integrating a powerful self-supervised pre-trained model for speech representation. In comparison with a state-of-the-art embedding compensation method, the proposed MMSE estimator yields superior and competitive equal error rate results when tackling shouted and whispered speech, respectively.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2809299495
source Free E- Journals
subjects Compensation
Embedding
Performance degradation
Principal components analysis
Speech
Verification
title Improved Vocal Effort Transfer Vector Estimation for Vocal Effort-Robust Speaker Verification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improved%20Vocal%20Effort%20Transfer%20Vector%20Estimation%20for%20Vocal%20Effort-Robust%20Speaker%20Verification&rft.jtitle=arXiv.org&rft.au=L%C3%B3pez-Espejo,%20Iv%C3%A1n&rft.date=2023-07-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2809299495%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809299495&rft_id=info:pmid/&rfr_iscdi=true