Classification and analysis of customer data using a novel criterion based random forest algorithm to improve retention rate over SVM algorithm in terms of prediction rate

The framework aims at analyzing the telecom customer data and predicting the churn for improving the customer retention rate. The customer information dataset used for training and testing of the proposed prediction model consists of 7043 customers with 21 attributes. The Prediction of Churn is done...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pepakayala, Sai Surya, Kannan, Anitha
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2655
creator Pepakayala, Sai Surya
Kannan, Anitha
description The framework aims at analyzing the telecom customer data and predicting the churn for improving the customer retention rate. The customer information dataset used for training and testing of the proposed prediction model consists of 7043 customers with 21 attributes. The Prediction of Churn is done by adapting Random Forest (RF) and Support Vector Machine (SVM) algorithms. The classification accuracy of the Random Forest classifier is (79%) and SVM is (75%). There is a statistically significant difference among the study groups with a significance value (p
doi_str_mv 10.1063/5.0114284
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2809259587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809259587</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-974bb5092c00b1ce7f5b5d0fb62099d9a0ff3eafd01148c51921032ed62885253</originalsourceid><addsrcrecordid>eNp9kctKxDAUhoMoOI4ufIMD7oSOSdq0zVIGbzDiwgvuStokY4a2qUlmYJ7JlzRzQV25OAQO3_-fk_8gdE7whOA8vWITTEhGy-wAjQhjJClykh-iEcY8S2iWvh-jE-8XGFNeFOUIfU1b4b3RphHB2B5EL2OJdu2NB6uhWfpgO-VAiiBg6U0_BwG9XakWGmeCchtVLbyS4KLYdqCtUz6AaOc2Ah8dBAumG1zUgFNB9dtBTgQFseXg-e3xD2x6iKbddvjglDTND36KjrRovTrbv2P0envzMr1PZk93D9PrWTKQvAwJL7K6ZpjTBuOaNKrQrGYS6zqnmHPJBdY6VULLTVJlwwinBKdUyZyWJaMsHaOLnW_c-XMZ_1It7NLFUHxFy-jLOCuLSF3uKN-YsA2vGpzphFtXK-sqVu0PUQ1S_wcTXG0u9ytIvwFJIY48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2809259587</pqid></control><display><type>conference_proceeding</type><title>Classification and analysis of customer data using a novel criterion based random forest algorithm to improve retention rate over SVM algorithm in terms of prediction rate</title><source>AIP Journals Complete</source><creator>Pepakayala, Sai Surya ; Kannan, Anitha</creator><contributor>Iqba, Uqbah ; Aravindan, Surendar ; Krit, Salahddine</contributor><creatorcontrib>Pepakayala, Sai Surya ; Kannan, Anitha ; Iqba, Uqbah ; Aravindan, Surendar ; Krit, Salahddine</creatorcontrib><description>The framework aims at analyzing the telecom customer data and predicting the churn for improving the customer retention rate. The customer information dataset used for training and testing of the proposed prediction model consists of 7043 customers with 21 attributes. The Prediction of Churn is done by adapting Random Forest (RF) and Support Vector Machine (SVM) algorithms. The classification accuracy of the Random Forest classifier is (79%) and SVM is (75%). There is a statistically significant difference among the study groups with a significance value (p&lt;0.05). The experimental results provide evidence that the Random Forest classifier seems to be more suitable for churn prediction with a lesser error rate, better sensitivity, and accuracy.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0114284</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Classification ; Classifiers ; Customer satisfaction ; Prediction models ; Support vector machines</subject><ispartof>AIP conference proceedings, 2023, Vol.2655 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0114284$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Iqba, Uqbah</contributor><contributor>Aravindan, Surendar</contributor><contributor>Krit, Salahddine</contributor><creatorcontrib>Pepakayala, Sai Surya</creatorcontrib><creatorcontrib>Kannan, Anitha</creatorcontrib><title>Classification and analysis of customer data using a novel criterion based random forest algorithm to improve retention rate over SVM algorithm in terms of prediction rate</title><title>AIP conference proceedings</title><description>The framework aims at analyzing the telecom customer data and predicting the churn for improving the customer retention rate. The customer information dataset used for training and testing of the proposed prediction model consists of 7043 customers with 21 attributes. The Prediction of Churn is done by adapting Random Forest (RF) and Support Vector Machine (SVM) algorithms. The classification accuracy of the Random Forest classifier is (79%) and SVM is (75%). There is a statistically significant difference among the study groups with a significance value (p&lt;0.05). The experimental results provide evidence that the Random Forest classifier seems to be more suitable for churn prediction with a lesser error rate, better sensitivity, and accuracy.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Customer satisfaction</subject><subject>Prediction models</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kctKxDAUhoMoOI4ufIMD7oSOSdq0zVIGbzDiwgvuStokY4a2qUlmYJ7JlzRzQV25OAQO3_-fk_8gdE7whOA8vWITTEhGy-wAjQhjJClykh-iEcY8S2iWvh-jE-8XGFNeFOUIfU1b4b3RphHB2B5EL2OJdu2NB6uhWfpgO-VAiiBg6U0_BwG9XakWGmeCchtVLbyS4KLYdqCtUz6AaOc2Ah8dBAumG1zUgFNB9dtBTgQFseXg-e3xD2x6iKbddvjglDTND36KjrRovTrbv2P0envzMr1PZk93D9PrWTKQvAwJL7K6ZpjTBuOaNKrQrGYS6zqnmHPJBdY6VULLTVJlwwinBKdUyZyWJaMsHaOLnW_c-XMZ_1It7NLFUHxFy-jLOCuLSF3uKN-YsA2vGpzphFtXK-sqVu0PUQ1S_wcTXG0u9ytIvwFJIY48</recordid><startdate>20230504</startdate><enddate>20230504</enddate><creator>Pepakayala, Sai Surya</creator><creator>Kannan, Anitha</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230504</creationdate><title>Classification and analysis of customer data using a novel criterion based random forest algorithm to improve retention rate over SVM algorithm in terms of prediction rate</title><author>Pepakayala, Sai Surya ; Kannan, Anitha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-974bb5092c00b1ce7f5b5d0fb62099d9a0ff3eafd01148c51921032ed62885253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Customer satisfaction</topic><topic>Prediction models</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pepakayala, Sai Surya</creatorcontrib><creatorcontrib>Kannan, Anitha</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pepakayala, Sai Surya</au><au>Kannan, Anitha</au><au>Iqba, Uqbah</au><au>Aravindan, Surendar</au><au>Krit, Salahddine</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification and analysis of customer data using a novel criterion based random forest algorithm to improve retention rate over SVM algorithm in terms of prediction rate</atitle><btitle>AIP conference proceedings</btitle><date>2023-05-04</date><risdate>2023</risdate><volume>2655</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The framework aims at analyzing the telecom customer data and predicting the churn for improving the customer retention rate. The customer information dataset used for training and testing of the proposed prediction model consists of 7043 customers with 21 attributes. The Prediction of Churn is done by adapting Random Forest (RF) and Support Vector Machine (SVM) algorithms. The classification accuracy of the Random Forest classifier is (79%) and SVM is (75%). There is a statistically significant difference among the study groups with a significance value (p&lt;0.05). The experimental results provide evidence that the Random Forest classifier seems to be more suitable for churn prediction with a lesser error rate, better sensitivity, and accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0114284</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2655 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2809259587
source AIP Journals Complete
subjects Algorithms
Classification
Classifiers
Customer satisfaction
Prediction models
Support vector machines
title Classification and analysis of customer data using a novel criterion based random forest algorithm to improve retention rate over SVM algorithm in terms of prediction rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A12%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20and%20analysis%20of%20customer%20data%20using%20a%20novel%20criterion%20based%20random%20forest%20algorithm%20to%20improve%20retention%20rate%20over%20SVM%20algorithm%20in%20terms%20of%20prediction%20rate&rft.btitle=AIP%20conference%20proceedings&rft.au=Pepakayala,%20Sai%20Surya&rft.date=2023-05-04&rft.volume=2655&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0114284&rft_dat=%3Cproquest_scita%3E2809259587%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809259587&rft_id=info:pmid/&rfr_iscdi=true