Recursive and non-recursive kernel estimation of negative cumulative residual extropy under α-mixing dependence condition

The Shannon’s entropy function has a complementary dual function namely extropy and it facilitates the comparison of uncertainties of two random variables (see Lad et al. Stat Sci 30:40–58, 2015). Following the work of Lad et al. (Stat Sci 30:40–58, 2015), various generalizations/extensions of extro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ricerche di matematica 2023-06, Vol.72 (1), p.119-139
Hauptverfasser: Maya, R., Irshad, M. R., Archana, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 1
container_start_page 119
container_title Ricerche di matematica
container_volume 72
creator Maya, R.
Irshad, M. R.
Archana, K.
description The Shannon’s entropy function has a complementary dual function namely extropy and it facilitates the comparison of uncertainties of two random variables (see Lad et al. Stat Sci 30:40–58, 2015). Following the work of Lad et al. (Stat Sci 30:40–58, 2015), various generalizations/extensions of extropy measure are discussed in the literature analogous to that of Shannon’s entropy. Accordingly, a negative cumulative residual extropy is introduced by Tahmasebi and Toomaj (Commun Stat Theor Methods, 2020. https://doi.org/10.1080/03610926.2020.1831541). In the present work, we provide nonparametric kernel type estimators for the negative cumulative residual extropy based on the observations under study are dependent. Various properties including asymptotic properties of the proposed estimators are derived under suitable regularity conditions. A Monte-Carlo simulation study is carried out to find out the bias and mean squared error of the estimators.
doi_str_mv 10.1007/s11587-021-00605-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2809101752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809101752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9efb2bb8efda02ea87f73a03608b7f1723da487645ece7375d9e614b723b7a9a3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2bC2k9g5ooqXVAkJwdly4k2V0jrBblDLX_EjfBOGILhx2tHszKx2CDnlcM4B1EXkPNeKgeAMoICcwR6ZcC0Uk1nJ98kEQOYsB6kPyVGMS4BM5ZBNyNsD1kOI7StS6x31nWfhl3nG4HFFMW7atd20naddQz0uEk7belgPqxEGjK0bbJJuN6Hrd3TwDgP9eGfrdtv6BXXYY6J8nWydd-1X2DE5aOwq4snPnJKn66vH2S2b39_czS7nrJa83LASm0pUlcbGWRBotWqUtCAL0JVquBLS2UyrIsuxRiVV7koseFalRaVsaeWUnI25fehehvSMWXZD8OmkERpKDlzlIqnEqKpDF2PAxvQhfR12hoP56tiMHZvUsfnu2EAyydEUk9gvMPxF_-P6BE_Xgv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809101752</pqid></control><display><type>article</type><title>Recursive and non-recursive kernel estimation of negative cumulative residual extropy under α-mixing dependence condition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Maya, R. ; Irshad, M. R. ; Archana, K.</creator><creatorcontrib>Maya, R. ; Irshad, M. R. ; Archana, K.</creatorcontrib><description>The Shannon’s entropy function has a complementary dual function namely extropy and it facilitates the comparison of uncertainties of two random variables (see Lad et al. Stat Sci 30:40–58, 2015). Following the work of Lad et al. (Stat Sci 30:40–58, 2015), various generalizations/extensions of extropy measure are discussed in the literature analogous to that of Shannon’s entropy. Accordingly, a negative cumulative residual extropy is introduced by Tahmasebi and Toomaj (Commun Stat Theor Methods, 2020. https://doi.org/10.1080/03610926.2020.1831541). In the present work, we provide nonparametric kernel type estimators for the negative cumulative residual extropy based on the observations under study are dependent. Various properties including asymptotic properties of the proposed estimators are derived under suitable regularity conditions. A Monte-Carlo simulation study is carried out to find out the bias and mean squared error of the estimators.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-021-00605-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Asymptotic properties ; Entropy (Information theory) ; Estimators ; Geometry ; Kernels ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Probability Theory and Stochastic Processes ; Random variables</subject><ispartof>Ricerche di matematica, 2023-06, Vol.72 (1), p.119-139</ispartof><rights>Università degli Studi di Napoli "Federico II" 2021</rights><rights>Università degli Studi di Napoli "Federico II" 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9efb2bb8efda02ea87f73a03608b7f1723da487645ece7375d9e614b723b7a9a3</citedby><cites>FETCH-LOGICAL-c319t-9efb2bb8efda02ea87f73a03608b7f1723da487645ece7375d9e614b723b7a9a3</cites><orcidid>0000-0002-5999-1588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11587-021-00605-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11587-021-00605-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maya, R.</creatorcontrib><creatorcontrib>Irshad, M. R.</creatorcontrib><creatorcontrib>Archana, K.</creatorcontrib><title>Recursive and non-recursive kernel estimation of negative cumulative residual extropy under α-mixing dependence condition</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>The Shannon’s entropy function has a complementary dual function namely extropy and it facilitates the comparison of uncertainties of two random variables (see Lad et al. Stat Sci 30:40–58, 2015). Following the work of Lad et al. (Stat Sci 30:40–58, 2015), various generalizations/extensions of extropy measure are discussed in the literature analogous to that of Shannon’s entropy. Accordingly, a negative cumulative residual extropy is introduced by Tahmasebi and Toomaj (Commun Stat Theor Methods, 2020. https://doi.org/10.1080/03610926.2020.1831541). In the present work, we provide nonparametric kernel type estimators for the negative cumulative residual extropy based on the observations under study are dependent. Various properties including asymptotic properties of the proposed estimators are derived under suitable regularity conditions. A Monte-Carlo simulation study is carried out to find out the bias and mean squared error of the estimators.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Entropy (Information theory)</subject><subject>Estimators</subject><subject>Geometry</subject><subject>Kernels</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2bC2k9g5ooqXVAkJwdly4k2V0jrBblDLX_EjfBOGILhx2tHszKx2CDnlcM4B1EXkPNeKgeAMoICcwR6ZcC0Uk1nJ98kEQOYsB6kPyVGMS4BM5ZBNyNsD1kOI7StS6x31nWfhl3nG4HFFMW7atd20naddQz0uEk7belgPqxEGjK0bbJJuN6Hrd3TwDgP9eGfrdtv6BXXYY6J8nWydd-1X2DE5aOwq4snPnJKn66vH2S2b39_czS7nrJa83LASm0pUlcbGWRBotWqUtCAL0JVquBLS2UyrIsuxRiVV7koseFalRaVsaeWUnI25fehehvSMWXZD8OmkERpKDlzlIqnEqKpDF2PAxvQhfR12hoP56tiMHZvUsfnu2EAyydEUk9gvMPxF_-P6BE_Xgv0</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Maya, R.</creator><creator>Irshad, M. R.</creator><creator>Archana, K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5999-1588</orcidid></search><sort><creationdate>20230601</creationdate><title>Recursive and non-recursive kernel estimation of negative cumulative residual extropy under α-mixing dependence condition</title><author>Maya, R. ; Irshad, M. R. ; Archana, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9efb2bb8efda02ea87f73a03608b7f1723da487645ece7375d9e614b723b7a9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Entropy (Information theory)</topic><topic>Estimators</topic><topic>Geometry</topic><topic>Kernels</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maya, R.</creatorcontrib><creatorcontrib>Irshad, M. R.</creatorcontrib><creatorcontrib>Archana, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maya, R.</au><au>Irshad, M. R.</au><au>Archana, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive and non-recursive kernel estimation of negative cumulative residual extropy under α-mixing dependence condition</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>72</volume><issue>1</issue><spage>119</spage><epage>139</epage><pages>119-139</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>The Shannon’s entropy function has a complementary dual function namely extropy and it facilitates the comparison of uncertainties of two random variables (see Lad et al. Stat Sci 30:40–58, 2015). Following the work of Lad et al. (Stat Sci 30:40–58, 2015), various generalizations/extensions of extropy measure are discussed in the literature analogous to that of Shannon’s entropy. Accordingly, a negative cumulative residual extropy is introduced by Tahmasebi and Toomaj (Commun Stat Theor Methods, 2020. https://doi.org/10.1080/03610926.2020.1831541). In the present work, we provide nonparametric kernel type estimators for the negative cumulative residual extropy based on the observations under study are dependent. Various properties including asymptotic properties of the proposed estimators are derived under suitable regularity conditions. A Monte-Carlo simulation study is carried out to find out the bias and mean squared error of the estimators.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-021-00605-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5999-1588</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0035-5038
ispartof Ricerche di matematica, 2023-06, Vol.72 (1), p.119-139
issn 0035-5038
1827-3491
language eng
recordid cdi_proquest_journals_2809101752
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Asymptotic properties
Entropy (Information theory)
Estimators
Geometry
Kernels
Mathematics
Mathematics and Statistics
Numerical Analysis
Probability Theory and Stochastic Processes
Random variables
title Recursive and non-recursive kernel estimation of negative cumulative residual extropy under α-mixing dependence condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20and%20non-recursive%20kernel%20estimation%20of%20negative%20cumulative%20residual%20extropy%20under%20%CE%B1-mixing%20dependence%20condition&rft.jtitle=Ricerche%20di%20matematica&rft.au=Maya,%20R.&rft.date=2023-06-01&rft.volume=72&rft.issue=1&rft.spage=119&rft.epage=139&rft.pages=119-139&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-021-00605-0&rft_dat=%3Cproquest_cross%3E2809101752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809101752&rft_id=info:pmid/&rfr_iscdi=true