Recursive and non-recursive kernel estimation of negative cumulative residual extropy under α-mixing dependence condition
The Shannon’s entropy function has a complementary dual function namely extropy and it facilitates the comparison of uncertainties of two random variables (see Lad et al. Stat Sci 30:40–58, 2015). Following the work of Lad et al. (Stat Sci 30:40–58, 2015), various generalizations/extensions of extro...
Gespeichert in:
Veröffentlicht in: | Ricerche di matematica 2023-06, Vol.72 (1), p.119-139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139 |
---|---|
container_issue | 1 |
container_start_page | 119 |
container_title | Ricerche di matematica |
container_volume | 72 |
creator | Maya, R. Irshad, M. R. Archana, K. |
description | The Shannon’s entropy function has a complementary dual function namely extropy and it facilitates the comparison of uncertainties of two random variables (see Lad et al. Stat Sci 30:40–58, 2015). Following the work of Lad et al. (Stat Sci 30:40–58, 2015), various generalizations/extensions of extropy measure are discussed in the literature analogous to that of Shannon’s entropy. Accordingly, a negative cumulative residual extropy is introduced by Tahmasebi and Toomaj (Commun Stat Theor Methods, 2020. https://doi.org/10.1080/03610926.2020.1831541). In the present work, we provide nonparametric kernel type estimators for the negative cumulative residual extropy based on the observations under study are dependent. Various properties including asymptotic properties of the proposed estimators are derived under suitable regularity conditions. A Monte-Carlo simulation study is carried out to find out the bias and mean squared error of the estimators. |
doi_str_mv | 10.1007/s11587-021-00605-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2809101752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809101752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9efb2bb8efda02ea87f73a03608b7f1723da487645ece7375d9e614b723b7a9a3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2bC2k9g5ooqXVAkJwdly4k2V0jrBblDLX_EjfBOGILhx2tHszKx2CDnlcM4B1EXkPNeKgeAMoICcwR6ZcC0Uk1nJ98kEQOYsB6kPyVGMS4BM5ZBNyNsD1kOI7StS6x31nWfhl3nG4HFFMW7atd20naddQz0uEk7belgPqxEGjK0bbJJuN6Hrd3TwDgP9eGfrdtv6BXXYY6J8nWydd-1X2DE5aOwq4snPnJKn66vH2S2b39_czS7nrJa83LASm0pUlcbGWRBotWqUtCAL0JVquBLS2UyrIsuxRiVV7koseFalRaVsaeWUnI25fehehvSMWXZD8OmkERpKDlzlIqnEqKpDF2PAxvQhfR12hoP56tiMHZvUsfnu2EAyydEUk9gvMPxF_-P6BE_Xgv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809101752</pqid></control><display><type>article</type><title>Recursive and non-recursive kernel estimation of negative cumulative residual extropy under α-mixing dependence condition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Maya, R. ; Irshad, M. R. ; Archana, K.</creator><creatorcontrib>Maya, R. ; Irshad, M. R. ; Archana, K.</creatorcontrib><description>The Shannon’s entropy function has a complementary dual function namely extropy and it facilitates the comparison of uncertainties of two random variables (see Lad et al. Stat Sci 30:40–58, 2015). Following the work of Lad et al. (Stat Sci 30:40–58, 2015), various generalizations/extensions of extropy measure are discussed in the literature analogous to that of Shannon’s entropy. Accordingly, a negative cumulative residual extropy is introduced by Tahmasebi and Toomaj (Commun Stat Theor Methods, 2020. https://doi.org/10.1080/03610926.2020.1831541). In the present work, we provide nonparametric kernel type estimators for the negative cumulative residual extropy based on the observations under study are dependent. Various properties including asymptotic properties of the proposed estimators are derived under suitable regularity conditions. A Monte-Carlo simulation study is carried out to find out the bias and mean squared error of the estimators.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-021-00605-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Asymptotic properties ; Entropy (Information theory) ; Estimators ; Geometry ; Kernels ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Probability Theory and Stochastic Processes ; Random variables</subject><ispartof>Ricerche di matematica, 2023-06, Vol.72 (1), p.119-139</ispartof><rights>Università degli Studi di Napoli "Federico II" 2021</rights><rights>Università degli Studi di Napoli "Federico II" 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9efb2bb8efda02ea87f73a03608b7f1723da487645ece7375d9e614b723b7a9a3</citedby><cites>FETCH-LOGICAL-c319t-9efb2bb8efda02ea87f73a03608b7f1723da487645ece7375d9e614b723b7a9a3</cites><orcidid>0000-0002-5999-1588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11587-021-00605-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11587-021-00605-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maya, R.</creatorcontrib><creatorcontrib>Irshad, M. R.</creatorcontrib><creatorcontrib>Archana, K.</creatorcontrib><title>Recursive and non-recursive kernel estimation of negative cumulative residual extropy under α-mixing dependence condition</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>The Shannon’s entropy function has a complementary dual function namely extropy and it facilitates the comparison of uncertainties of two random variables (see Lad et al. Stat Sci 30:40–58, 2015). Following the work of Lad et al. (Stat Sci 30:40–58, 2015), various generalizations/extensions of extropy measure are discussed in the literature analogous to that of Shannon’s entropy. Accordingly, a negative cumulative residual extropy is introduced by Tahmasebi and Toomaj (Commun Stat Theor Methods, 2020. https://doi.org/10.1080/03610926.2020.1831541). In the present work, we provide nonparametric kernel type estimators for the negative cumulative residual extropy based on the observations under study are dependent. Various properties including asymptotic properties of the proposed estimators are derived under suitable regularity conditions. A Monte-Carlo simulation study is carried out to find out the bias and mean squared error of the estimators.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Entropy (Information theory)</subject><subject>Estimators</subject><subject>Geometry</subject><subject>Kernels</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2bC2k9g5ooqXVAkJwdly4k2V0jrBblDLX_EjfBOGILhx2tHszKx2CDnlcM4B1EXkPNeKgeAMoICcwR6ZcC0Uk1nJ98kEQOYsB6kPyVGMS4BM5ZBNyNsD1kOI7StS6x31nWfhl3nG4HFFMW7atd20naddQz0uEk7belgPqxEGjK0bbJJuN6Hrd3TwDgP9eGfrdtv6BXXYY6J8nWydd-1X2DE5aOwq4snPnJKn66vH2S2b39_czS7nrJa83LASm0pUlcbGWRBotWqUtCAL0JVquBLS2UyrIsuxRiVV7koseFalRaVsaeWUnI25fehehvSMWXZD8OmkERpKDlzlIqnEqKpDF2PAxvQhfR12hoP56tiMHZvUsfnu2EAyydEUk9gvMPxF_-P6BE_Xgv0</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Maya, R.</creator><creator>Irshad, M. R.</creator><creator>Archana, K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5999-1588</orcidid></search><sort><creationdate>20230601</creationdate><title>Recursive and non-recursive kernel estimation of negative cumulative residual extropy under α-mixing dependence condition</title><author>Maya, R. ; Irshad, M. R. ; Archana, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9efb2bb8efda02ea87f73a03608b7f1723da487645ece7375d9e614b723b7a9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Entropy (Information theory)</topic><topic>Estimators</topic><topic>Geometry</topic><topic>Kernels</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maya, R.</creatorcontrib><creatorcontrib>Irshad, M. R.</creatorcontrib><creatorcontrib>Archana, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maya, R.</au><au>Irshad, M. R.</au><au>Archana, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive and non-recursive kernel estimation of negative cumulative residual extropy under α-mixing dependence condition</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>72</volume><issue>1</issue><spage>119</spage><epage>139</epage><pages>119-139</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>The Shannon’s entropy function has a complementary dual function namely extropy and it facilitates the comparison of uncertainties of two random variables (see Lad et al. Stat Sci 30:40–58, 2015). Following the work of Lad et al. (Stat Sci 30:40–58, 2015), various generalizations/extensions of extropy measure are discussed in the literature analogous to that of Shannon’s entropy. Accordingly, a negative cumulative residual extropy is introduced by Tahmasebi and Toomaj (Commun Stat Theor Methods, 2020. https://doi.org/10.1080/03610926.2020.1831541). In the present work, we provide nonparametric kernel type estimators for the negative cumulative residual extropy based on the observations under study are dependent. Various properties including asymptotic properties of the proposed estimators are derived under suitable regularity conditions. A Monte-Carlo simulation study is carried out to find out the bias and mean squared error of the estimators.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-021-00605-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5999-1588</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-5038 |
ispartof | Ricerche di matematica, 2023-06, Vol.72 (1), p.119-139 |
issn | 0035-5038 1827-3491 |
language | eng |
recordid | cdi_proquest_journals_2809101752 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Asymptotic properties Entropy (Information theory) Estimators Geometry Kernels Mathematics Mathematics and Statistics Numerical Analysis Probability Theory and Stochastic Processes Random variables |
title | Recursive and non-recursive kernel estimation of negative cumulative residual extropy under α-mixing dependence condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20and%20non-recursive%20kernel%20estimation%20of%20negative%20cumulative%20residual%20extropy%20under%20%CE%B1-mixing%20dependence%20condition&rft.jtitle=Ricerche%20di%20matematica&rft.au=Maya,%20R.&rft.date=2023-06-01&rft.volume=72&rft.issue=1&rft.spage=119&rft.epage=139&rft.pages=119-139&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-021-00605-0&rft_dat=%3Cproquest_cross%3E2809101752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809101752&rft_id=info:pmid/&rfr_iscdi=true |