Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field

In the present paper, we use a Lie group of transformations to obtain a class of similarity solutions to a problem of cylindrically symmetric strong shock waves propagating through one-dimensional, unsteady, and isothermal flow of a self-gravitating ideal gas under the influence of azimuthal magneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ricerche di matematica 2023-06, Vol.72 (1), p.491-510
Hauptverfasser: Singh, Deepika, Arora, Rajan, Chauhan, Astha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 510
container_issue 1
container_start_page 491
container_title Ricerche di matematica
container_volume 72
creator Singh, Deepika
Arora, Rajan
Chauhan, Astha
description In the present paper, we use a Lie group of transformations to obtain a class of similarity solutions to a problem of cylindrically symmetric strong shock waves propagating through one-dimensional, unsteady, and isothermal flow of a self-gravitating ideal gas under the influence of azimuthal magnetic field. The density of the ambient medium is assumed to be non-uniform ahead of the shock. The generators of the Lie group of transformations involve arbitrary constants which yield four different cases of possible solutions. Out of all possibilities, only two cases hold similarity solutions. One is with a power law shock path, and the other one is with an exponential law shock path. We present a detailed investigation for the case of power law shock path. Numerical computations have been performed to find out the flow patterns in the flow-field behind the shock. Also, we have analyzed the effects of variation in adiabatic index, ambient density exponent, gravitational parameter, and Alfven-Mach number on the flow variables behind the shock. All computations have been done using the software package MATLAB.
doi_str_mv 10.1007/s11587-020-00529-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2809101737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809101737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7fc3e8cfb78e8d5ec9fb1f6d6a8920b08ae730b0a766ae4ae14367ebabe0179e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcB19WXpm3SpQx-wYALdSnhtX2tGdtmTFpl_r0dK7hzdTfnXi6HsXMBlwJAXQUhUq0iiCECSOM8EgdsIXSsIpnk4pAtAGQapSD1MTsJYQOQqBSSBXt9sp1t0dthx4Nrx8G6PvDaeR4G7_qGhzdXvvMv_KTAbc87bHoaXIOh2vXY2TLwsa_Ic-SNx0874H4BW15baqtTdlRjG-jsN5fs5fbmeXUfrR_vHlbX66iUIh8iVZeSdFkXSpOuUirzuhB1VmWo8xgK0EhKTokqy5ASJJHITFGBBYFQOcklu5h3t959jBQGs3Gjn24EE2vIxURJNVHxTJXeheCpNltvO_Q7I8DsNZpZo5k0mh-NRkwlOZfCBPcN-b_pf1rfNBt3-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809101737</pqid></control><display><type>article</type><title>Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field</title><source>SpringerNature Journals</source><creator>Singh, Deepika ; Arora, Rajan ; Chauhan, Astha</creator><creatorcontrib>Singh, Deepika ; Arora, Rajan ; Chauhan, Astha</creatorcontrib><description>In the present paper, we use a Lie group of transformations to obtain a class of similarity solutions to a problem of cylindrically symmetric strong shock waves propagating through one-dimensional, unsteady, and isothermal flow of a self-gravitating ideal gas under the influence of azimuthal magnetic field. The density of the ambient medium is assumed to be non-uniform ahead of the shock. The generators of the Lie group of transformations involve arbitrary constants which yield four different cases of possible solutions. Out of all possibilities, only two cases hold similarity solutions. One is with a power law shock path, and the other one is with an exponential law shock path. We present a detailed investigation for the case of power law shock path. Numerical computations have been performed to find out the flow patterns in the flow-field behind the shock. Also, we have analyzed the effects of variation in adiabatic index, ambient density exponent, gravitational parameter, and Alfven-Mach number on the flow variables behind the shock. All computations have been done using the software package MATLAB.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-020-00529-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Density ; Flow distribution ; Geometry ; Gravitation ; Gravitational fields ; Ideal gas ; Isothermal flow ; Lie groups ; Mach number ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Power law ; Probability Theory and Stochastic Processes ; Shock wave propagation ; Shock waves ; Similarity solutions</subject><ispartof>Ricerche di matematica, 2023-06, Vol.72 (1), p.491-510</ispartof><rights>Università degli Studi di Napoli "Federico II" 2020</rights><rights>Università degli Studi di Napoli "Federico II" 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7fc3e8cfb78e8d5ec9fb1f6d6a8920b08ae730b0a766ae4ae14367ebabe0179e3</citedby><cites>FETCH-LOGICAL-c319t-7fc3e8cfb78e8d5ec9fb1f6d6a8920b08ae730b0a766ae4ae14367ebabe0179e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11587-020-00529-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11587-020-00529-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Singh, Deepika</creatorcontrib><creatorcontrib>Arora, Rajan</creatorcontrib><creatorcontrib>Chauhan, Astha</creatorcontrib><title>Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>In the present paper, we use a Lie group of transformations to obtain a class of similarity solutions to a problem of cylindrically symmetric strong shock waves propagating through one-dimensional, unsteady, and isothermal flow of a self-gravitating ideal gas under the influence of azimuthal magnetic field. The density of the ambient medium is assumed to be non-uniform ahead of the shock. The generators of the Lie group of transformations involve arbitrary constants which yield four different cases of possible solutions. Out of all possibilities, only two cases hold similarity solutions. One is with a power law shock path, and the other one is with an exponential law shock path. We present a detailed investigation for the case of power law shock path. Numerical computations have been performed to find out the flow patterns in the flow-field behind the shock. Also, we have analyzed the effects of variation in adiabatic index, ambient density exponent, gravitational parameter, and Alfven-Mach number on the flow variables behind the shock. All computations have been done using the software package MATLAB.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Density</subject><subject>Flow distribution</subject><subject>Geometry</subject><subject>Gravitation</subject><subject>Gravitational fields</subject><subject>Ideal gas</subject><subject>Isothermal flow</subject><subject>Lie groups</subject><subject>Mach number</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Power law</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Similarity solutions</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcB19WXpm3SpQx-wYALdSnhtX2tGdtmTFpl_r0dK7hzdTfnXi6HsXMBlwJAXQUhUq0iiCECSOM8EgdsIXSsIpnk4pAtAGQapSD1MTsJYQOQqBSSBXt9sp1t0dthx4Nrx8G6PvDaeR4G7_qGhzdXvvMv_KTAbc87bHoaXIOh2vXY2TLwsa_Ic-SNx0874H4BW15baqtTdlRjG-jsN5fs5fbmeXUfrR_vHlbX66iUIh8iVZeSdFkXSpOuUirzuhB1VmWo8xgK0EhKTokqy5ASJJHITFGBBYFQOcklu5h3t959jBQGs3Gjn24EE2vIxURJNVHxTJXeheCpNltvO_Q7I8DsNZpZo5k0mh-NRkwlOZfCBPcN-b_pf1rfNBt3-A</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Singh, Deepika</creator><creator>Arora, Rajan</creator><creator>Chauhan, Astha</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field</title><author>Singh, Deepika ; Arora, Rajan ; Chauhan, Astha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7fc3e8cfb78e8d5ec9fb1f6d6a8920b08ae730b0a766ae4ae14367ebabe0179e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Density</topic><topic>Flow distribution</topic><topic>Geometry</topic><topic>Gravitation</topic><topic>Gravitational fields</topic><topic>Ideal gas</topic><topic>Isothermal flow</topic><topic>Lie groups</topic><topic>Mach number</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Power law</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Similarity solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Deepika</creatorcontrib><creatorcontrib>Arora, Rajan</creatorcontrib><creatorcontrib>Chauhan, Astha</creatorcontrib><collection>CrossRef</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Deepika</au><au>Arora, Rajan</au><au>Chauhan, Astha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>72</volume><issue>1</issue><spage>491</spage><epage>510</epage><pages>491-510</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>In the present paper, we use a Lie group of transformations to obtain a class of similarity solutions to a problem of cylindrically symmetric strong shock waves propagating through one-dimensional, unsteady, and isothermal flow of a self-gravitating ideal gas under the influence of azimuthal magnetic field. The density of the ambient medium is assumed to be non-uniform ahead of the shock. The generators of the Lie group of transformations involve arbitrary constants which yield four different cases of possible solutions. Out of all possibilities, only two cases hold similarity solutions. One is with a power law shock path, and the other one is with an exponential law shock path. We present a detailed investigation for the case of power law shock path. Numerical computations have been performed to find out the flow patterns in the flow-field behind the shock. Also, we have analyzed the effects of variation in adiabatic index, ambient density exponent, gravitational parameter, and Alfven-Mach number on the flow variables behind the shock. All computations have been done using the software package MATLAB.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-020-00529-1</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-5038
ispartof Ricerche di matematica, 2023-06, Vol.72 (1), p.491-510
issn 0035-5038
1827-3491
language eng
recordid cdi_proquest_journals_2809101737
source SpringerNature Journals
subjects Algebra
Analysis
Density
Flow distribution
Geometry
Gravitation
Gravitational fields
Ideal gas
Isothermal flow
Lie groups
Mach number
Mathematics
Mathematics and Statistics
Numerical Analysis
Power law
Probability Theory and Stochastic Processes
Shock wave propagation
Shock waves
Similarity solutions
title Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Similarity%20solutions%20for%20strong%20shock%20waves%20in%20magnetogasdynamics%20under%20a%20gravitational%20field&rft.jtitle=Ricerche%20di%20matematica&rft.au=Singh,%20Deepika&rft.date=2023-06-01&rft.volume=72&rft.issue=1&rft.spage=491&rft.epage=510&rft.pages=491-510&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-020-00529-1&rft_dat=%3Cproquest_cross%3E2809101737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809101737&rft_id=info:pmid/&rfr_iscdi=true