Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field
In the present paper, we use a Lie group of transformations to obtain a class of similarity solutions to a problem of cylindrically symmetric strong shock waves propagating through one-dimensional, unsteady, and isothermal flow of a self-gravitating ideal gas under the influence of azimuthal magneti...
Gespeichert in:
Veröffentlicht in: | Ricerche di matematica 2023-06, Vol.72 (1), p.491-510 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 510 |
---|---|
container_issue | 1 |
container_start_page | 491 |
container_title | Ricerche di matematica |
container_volume | 72 |
creator | Singh, Deepika Arora, Rajan Chauhan, Astha |
description | In the present paper, we use a Lie group of transformations to obtain a class of similarity solutions to a problem of cylindrically symmetric strong shock waves propagating through one-dimensional, unsteady, and isothermal flow of a self-gravitating ideal gas under the influence of azimuthal magnetic field. The density of the ambient medium is assumed to be non-uniform ahead of the shock. The generators of the Lie group of transformations involve arbitrary constants which yield four different cases of possible solutions. Out of all possibilities, only two cases hold similarity solutions. One is with a power law shock path, and the other one is with an exponential law shock path. We present a detailed investigation for the case of power law shock path. Numerical computations have been performed to find out the flow patterns in the flow-field behind the shock. Also, we have analyzed the effects of variation in adiabatic index, ambient density exponent, gravitational parameter, and Alfven-Mach number on the flow variables behind the shock. All computations have been done using the software package MATLAB. |
doi_str_mv | 10.1007/s11587-020-00529-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2809101737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809101737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7fc3e8cfb78e8d5ec9fb1f6d6a8920b08ae730b0a766ae4ae14367ebabe0179e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcB19WXpm3SpQx-wYALdSnhtX2tGdtmTFpl_r0dK7hzdTfnXi6HsXMBlwJAXQUhUq0iiCECSOM8EgdsIXSsIpnk4pAtAGQapSD1MTsJYQOQqBSSBXt9sp1t0dthx4Nrx8G6PvDaeR4G7_qGhzdXvvMv_KTAbc87bHoaXIOh2vXY2TLwsa_Ic-SNx0874H4BW15baqtTdlRjG-jsN5fs5fbmeXUfrR_vHlbX66iUIh8iVZeSdFkXSpOuUirzuhB1VmWo8xgK0EhKTokqy5ASJJHITFGBBYFQOcklu5h3t959jBQGs3Gjn24EE2vIxURJNVHxTJXeheCpNltvO_Q7I8DsNZpZo5k0mh-NRkwlOZfCBPcN-b_pf1rfNBt3-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809101737</pqid></control><display><type>article</type><title>Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field</title><source>SpringerNature Journals</source><creator>Singh, Deepika ; Arora, Rajan ; Chauhan, Astha</creator><creatorcontrib>Singh, Deepika ; Arora, Rajan ; Chauhan, Astha</creatorcontrib><description>In the present paper, we use a Lie group of transformations to obtain a class of similarity solutions to a problem of cylindrically symmetric strong shock waves propagating through one-dimensional, unsteady, and isothermal flow of a self-gravitating ideal gas under the influence of azimuthal magnetic field. The density of the ambient medium is assumed to be non-uniform ahead of the shock. The generators of the Lie group of transformations involve arbitrary constants which yield four different cases of possible solutions. Out of all possibilities, only two cases hold similarity solutions. One is with a power law shock path, and the other one is with an exponential law shock path. We present a detailed investigation for the case of power law shock path. Numerical computations have been performed to find out the flow patterns in the flow-field behind the shock. Also, we have analyzed the effects of variation in adiabatic index, ambient density exponent, gravitational parameter, and Alfven-Mach number on the flow variables behind the shock. All computations have been done using the software package MATLAB.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-020-00529-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Density ; Flow distribution ; Geometry ; Gravitation ; Gravitational fields ; Ideal gas ; Isothermal flow ; Lie groups ; Mach number ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Power law ; Probability Theory and Stochastic Processes ; Shock wave propagation ; Shock waves ; Similarity solutions</subject><ispartof>Ricerche di matematica, 2023-06, Vol.72 (1), p.491-510</ispartof><rights>Università degli Studi di Napoli "Federico II" 2020</rights><rights>Università degli Studi di Napoli "Federico II" 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7fc3e8cfb78e8d5ec9fb1f6d6a8920b08ae730b0a766ae4ae14367ebabe0179e3</citedby><cites>FETCH-LOGICAL-c319t-7fc3e8cfb78e8d5ec9fb1f6d6a8920b08ae730b0a766ae4ae14367ebabe0179e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11587-020-00529-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11587-020-00529-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Singh, Deepika</creatorcontrib><creatorcontrib>Arora, Rajan</creatorcontrib><creatorcontrib>Chauhan, Astha</creatorcontrib><title>Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>In the present paper, we use a Lie group of transformations to obtain a class of similarity solutions to a problem of cylindrically symmetric strong shock waves propagating through one-dimensional, unsteady, and isothermal flow of a self-gravitating ideal gas under the influence of azimuthal magnetic field. The density of the ambient medium is assumed to be non-uniform ahead of the shock. The generators of the Lie group of transformations involve arbitrary constants which yield four different cases of possible solutions. Out of all possibilities, only two cases hold similarity solutions. One is with a power law shock path, and the other one is with an exponential law shock path. We present a detailed investigation for the case of power law shock path. Numerical computations have been performed to find out the flow patterns in the flow-field behind the shock. Also, we have analyzed the effects of variation in adiabatic index, ambient density exponent, gravitational parameter, and Alfven-Mach number on the flow variables behind the shock. All computations have been done using the software package MATLAB.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Density</subject><subject>Flow distribution</subject><subject>Geometry</subject><subject>Gravitation</subject><subject>Gravitational fields</subject><subject>Ideal gas</subject><subject>Isothermal flow</subject><subject>Lie groups</subject><subject>Mach number</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Power law</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Similarity solutions</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcB19WXpm3SpQx-wYALdSnhtX2tGdtmTFpl_r0dK7hzdTfnXi6HsXMBlwJAXQUhUq0iiCECSOM8EgdsIXSsIpnk4pAtAGQapSD1MTsJYQOQqBSSBXt9sp1t0dthx4Nrx8G6PvDaeR4G7_qGhzdXvvMv_KTAbc87bHoaXIOh2vXY2TLwsa_Ic-SNx0874H4BW15baqtTdlRjG-jsN5fs5fbmeXUfrR_vHlbX66iUIh8iVZeSdFkXSpOuUirzuhB1VmWo8xgK0EhKTokqy5ASJJHITFGBBYFQOcklu5h3t959jBQGs3Gjn24EE2vIxURJNVHxTJXeheCpNltvO_Q7I8DsNZpZo5k0mh-NRkwlOZfCBPcN-b_pf1rfNBt3-A</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Singh, Deepika</creator><creator>Arora, Rajan</creator><creator>Chauhan, Astha</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field</title><author>Singh, Deepika ; Arora, Rajan ; Chauhan, Astha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7fc3e8cfb78e8d5ec9fb1f6d6a8920b08ae730b0a766ae4ae14367ebabe0179e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Density</topic><topic>Flow distribution</topic><topic>Geometry</topic><topic>Gravitation</topic><topic>Gravitational fields</topic><topic>Ideal gas</topic><topic>Isothermal flow</topic><topic>Lie groups</topic><topic>Mach number</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Power law</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Similarity solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Deepika</creatorcontrib><creatorcontrib>Arora, Rajan</creatorcontrib><creatorcontrib>Chauhan, Astha</creatorcontrib><collection>CrossRef</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Deepika</au><au>Arora, Rajan</au><au>Chauhan, Astha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>72</volume><issue>1</issue><spage>491</spage><epage>510</epage><pages>491-510</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>In the present paper, we use a Lie group of transformations to obtain a class of similarity solutions to a problem of cylindrically symmetric strong shock waves propagating through one-dimensional, unsteady, and isothermal flow of a self-gravitating ideal gas under the influence of azimuthal magnetic field. The density of the ambient medium is assumed to be non-uniform ahead of the shock. The generators of the Lie group of transformations involve arbitrary constants which yield four different cases of possible solutions. Out of all possibilities, only two cases hold similarity solutions. One is with a power law shock path, and the other one is with an exponential law shock path. We present a detailed investigation for the case of power law shock path. Numerical computations have been performed to find out the flow patterns in the flow-field behind the shock. Also, we have analyzed the effects of variation in adiabatic index, ambient density exponent, gravitational parameter, and Alfven-Mach number on the flow variables behind the shock. All computations have been done using the software package MATLAB.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-020-00529-1</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-5038 |
ispartof | Ricerche di matematica, 2023-06, Vol.72 (1), p.491-510 |
issn | 0035-5038 1827-3491 |
language | eng |
recordid | cdi_proquest_journals_2809101737 |
source | SpringerNature Journals |
subjects | Algebra Analysis Density Flow distribution Geometry Gravitation Gravitational fields Ideal gas Isothermal flow Lie groups Mach number Mathematics Mathematics and Statistics Numerical Analysis Power law Probability Theory and Stochastic Processes Shock wave propagation Shock waves Similarity solutions |
title | Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Similarity%20solutions%20for%20strong%20shock%20waves%20in%20magnetogasdynamics%20under%20a%20gravitational%20field&rft.jtitle=Ricerche%20di%20matematica&rft.au=Singh,%20Deepika&rft.date=2023-06-01&rft.volume=72&rft.issue=1&rft.spage=491&rft.epage=510&rft.pages=491-510&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-020-00529-1&rft_dat=%3Cproquest_cross%3E2809101737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809101737&rft_id=info:pmid/&rfr_iscdi=true |