A Knowledge-Enriched Ensemble Method for Word Embedding and Multi-Sense Embedding
Representing words as embeddings has been proven to be successful in improving the performance in many natural language processing tasks. Different from the traditional methods that learn the embeddings from large text corpora, ensemble methods have been proposed to leverage the merits of pre-traine...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-06, Vol.35 (6), p.5534-5549 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5549 |
---|---|
container_issue | 6 |
container_start_page | 5534 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Fang, Lanting Luo, Yong Feng, Kaiyu Zhao, Kaiqi Hu, Aiqun |
description | Representing words as embeddings has been proven to be successful in improving the performance in many natural language processing tasks. Different from the traditional methods that learn the embeddings from large text corpora, ensemble methods have been proposed to leverage the merits of pre-trained word embeddings as well as external semantic sources. In this paper, we propose a knowledge-enriched ensemble method to combine information from both knowledge graphs and pre-trained word embeddings. Specifically, we propose an attention network to retrofit the semantic information in the lexical knowledge graph into the pre-trained word embeddings. In addition, we further extend our method to contextual word embeddings and multi-sense embeddings. Extensive experiments demonstrate that the proposed word embeddings outperform the state-of-the-art models in word analogy, word similarity and several downstream tasks. The proposed word sense embeddings outperform the state-of-the-art models in word similarity and word sense induction tasks. |
doi_str_mv | 10.1109/TKDE.2022.3159539 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2808830392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9736679</ieee_id><sourcerecordid>2808830392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-5e29704be448bad371c6ddaf45425b97d07bd73e6f9c986d8a9fd4a3195378c23</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsFZ_gHhZ8Lx1v5LdPZYaP2iLiBWPyyY7aVPSbN2kiP_ehIqeZmCed4Z5ELpmdMIYNXer-X024ZTziWCJSYQ5QSOWJJpwZthp31PJiBRSnaOLtt1SSrXSbIRep3jehK8a_BpI1sSq2IDHWdPCLq8BL6HbBI_LEPFHiP1gl4P3VbPGrvF4eai7irxBT_9PLtFZ6eoWrn7rGL0_ZKvZE1m8PD7PpgtSCJF2JAFuFJU5SKlz54ViReq9K2UieZIb5anKvRKQlqYwOvXamdJLJ1j_nNIFF2N0e9y7j-HzAG1nt-EQm_6k5ZpqLagwA8WOVBFD20Yo7T5WOxe_LaN2MGcHc3YwZ3_N9ZmbY6YCgD_eKJGmyogfhIpo1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808830392</pqid></control><display><type>article</type><title>A Knowledge-Enriched Ensemble Method for Word Embedding and Multi-Sense Embedding</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Lanting ; Luo, Yong ; Feng, Kaiyu ; Zhao, Kaiqi ; Hu, Aiqun</creator><creatorcontrib>Fang, Lanting ; Luo, Yong ; Feng, Kaiyu ; Zhao, Kaiqi ; Hu, Aiqun</creatorcontrib><description>Representing words as embeddings has been proven to be successful in improving the performance in many natural language processing tasks. Different from the traditional methods that learn the embeddings from large text corpora, ensemble methods have been proposed to leverage the merits of pre-trained word embeddings as well as external semantic sources. In this paper, we propose a knowledge-enriched ensemble method to combine information from both knowledge graphs and pre-trained word embeddings. Specifically, we propose an attention network to retrofit the semantic information in the lexical knowledge graph into the pre-trained word embeddings. In addition, we further extend our method to contextual word embeddings and multi-sense embeddings. Extensive experiments demonstrate that the proposed word embeddings outperform the state-of-the-art models in word analogy, word similarity and several downstream tasks. The proposed word sense embeddings outperform the state-of-the-art models in word similarity and word sense induction tasks.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3159539</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bit error rate ; Context modeling ; Embedding ; ensemble model ; Knowledge engineering ; knowledge graph ; Knowledge representation ; multi-sense embedding ; Natural language processing ; Retrofitting ; Semantics ; Similarity ; Task analysis ; Vocabulary ; Wheels ; Word embedding ; Words (language)</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-06, Vol.35 (6), p.5534-5549</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-5e29704be448bad371c6ddaf45425b97d07bd73e6f9c986d8a9fd4a3195378c23</citedby><cites>FETCH-LOGICAL-c336t-5e29704be448bad371c6ddaf45425b97d07bd73e6f9c986d8a9fd4a3195378c23</cites><orcidid>0000-0002-4196-9366 ; 0000-0002-2296-6370 ; 0000-0002-0984-1629 ; 0000-0002-0398-4899 ; 0000-0002-1374-395X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9736679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9736679$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang, Lanting</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><creatorcontrib>Feng, Kaiyu</creatorcontrib><creatorcontrib>Zhao, Kaiqi</creatorcontrib><creatorcontrib>Hu, Aiqun</creatorcontrib><title>A Knowledge-Enriched Ensemble Method for Word Embedding and Multi-Sense Embedding</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Representing words as embeddings has been proven to be successful in improving the performance in many natural language processing tasks. Different from the traditional methods that learn the embeddings from large text corpora, ensemble methods have been proposed to leverage the merits of pre-trained word embeddings as well as external semantic sources. In this paper, we propose a knowledge-enriched ensemble method to combine information from both knowledge graphs and pre-trained word embeddings. Specifically, we propose an attention network to retrofit the semantic information in the lexical knowledge graph into the pre-trained word embeddings. In addition, we further extend our method to contextual word embeddings and multi-sense embeddings. Extensive experiments demonstrate that the proposed word embeddings outperform the state-of-the-art models in word analogy, word similarity and several downstream tasks. The proposed word sense embeddings outperform the state-of-the-art models in word similarity and word sense induction tasks.</description><subject>Bit error rate</subject><subject>Context modeling</subject><subject>Embedding</subject><subject>ensemble model</subject><subject>Knowledge engineering</subject><subject>knowledge graph</subject><subject>Knowledge representation</subject><subject>multi-sense embedding</subject><subject>Natural language processing</subject><subject>Retrofitting</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Task analysis</subject><subject>Vocabulary</subject><subject>Wheels</subject><subject>Word embedding</subject><subject>Words (language)</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1Lw0AQhhdRsFZ_gHhZ8Lx1v5LdPZYaP2iLiBWPyyY7aVPSbN2kiP_ehIqeZmCed4Z5ELpmdMIYNXer-X024ZTziWCJSYQ5QSOWJJpwZthp31PJiBRSnaOLtt1SSrXSbIRep3jehK8a_BpI1sSq2IDHWdPCLq8BL6HbBI_LEPFHiP1gl4P3VbPGrvF4eai7irxBT_9PLtFZ6eoWrn7rGL0_ZKvZE1m8PD7PpgtSCJF2JAFuFJU5SKlz54ViReq9K2UieZIb5anKvRKQlqYwOvXamdJLJ1j_nNIFF2N0e9y7j-HzAG1nt-EQm_6k5ZpqLagwA8WOVBFD20Yo7T5WOxe_LaN2MGcHc3YwZ3_N9ZmbY6YCgD_eKJGmyogfhIpo1g</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Fang, Lanting</creator><creator>Luo, Yong</creator><creator>Feng, Kaiyu</creator><creator>Zhao, Kaiqi</creator><creator>Hu, Aiqun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4196-9366</orcidid><orcidid>https://orcid.org/0000-0002-2296-6370</orcidid><orcidid>https://orcid.org/0000-0002-0984-1629</orcidid><orcidid>https://orcid.org/0000-0002-0398-4899</orcidid><orcidid>https://orcid.org/0000-0002-1374-395X</orcidid></search><sort><creationdate>20230601</creationdate><title>A Knowledge-Enriched Ensemble Method for Word Embedding and Multi-Sense Embedding</title><author>Fang, Lanting ; Luo, Yong ; Feng, Kaiyu ; Zhao, Kaiqi ; Hu, Aiqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-5e29704be448bad371c6ddaf45425b97d07bd73e6f9c986d8a9fd4a3195378c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bit error rate</topic><topic>Context modeling</topic><topic>Embedding</topic><topic>ensemble model</topic><topic>Knowledge engineering</topic><topic>knowledge graph</topic><topic>Knowledge representation</topic><topic>multi-sense embedding</topic><topic>Natural language processing</topic><topic>Retrofitting</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Task analysis</topic><topic>Vocabulary</topic><topic>Wheels</topic><topic>Word embedding</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Lanting</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><creatorcontrib>Feng, Kaiyu</creatorcontrib><creatorcontrib>Zhao, Kaiqi</creatorcontrib><creatorcontrib>Hu, Aiqun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, Lanting</au><au>Luo, Yong</au><au>Feng, Kaiyu</au><au>Zhao, Kaiqi</au><au>Hu, Aiqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Knowledge-Enriched Ensemble Method for Word Embedding and Multi-Sense Embedding</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>6</issue><spage>5534</spage><epage>5549</epage><pages>5534-5549</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Representing words as embeddings has been proven to be successful in improving the performance in many natural language processing tasks. Different from the traditional methods that learn the embeddings from large text corpora, ensemble methods have been proposed to leverage the merits of pre-trained word embeddings as well as external semantic sources. In this paper, we propose a knowledge-enriched ensemble method to combine information from both knowledge graphs and pre-trained word embeddings. Specifically, we propose an attention network to retrofit the semantic information in the lexical knowledge graph into the pre-trained word embeddings. In addition, we further extend our method to contextual word embeddings and multi-sense embeddings. Extensive experiments demonstrate that the proposed word embeddings outperform the state-of-the-art models in word analogy, word similarity and several downstream tasks. The proposed word sense embeddings outperform the state-of-the-art models in word similarity and word sense induction tasks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3159539</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4196-9366</orcidid><orcidid>https://orcid.org/0000-0002-2296-6370</orcidid><orcidid>https://orcid.org/0000-0002-0984-1629</orcidid><orcidid>https://orcid.org/0000-0002-0398-4899</orcidid><orcidid>https://orcid.org/0000-0002-1374-395X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-06, Vol.35 (6), p.5534-5549 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_journals_2808830392 |
source | IEEE Electronic Library (IEL) |
subjects | Bit error rate Context modeling Embedding ensemble model Knowledge engineering knowledge graph Knowledge representation multi-sense embedding Natural language processing Retrofitting Semantics Similarity Task analysis Vocabulary Wheels Word embedding Words (language) |
title | A Knowledge-Enriched Ensemble Method for Word Embedding and Multi-Sense Embedding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Knowledge-Enriched%20Ensemble%20Method%20for%20Word%20Embedding%20and%20Multi-Sense%20Embedding&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Fang,%20Lanting&rft.date=2023-06-01&rft.volume=35&rft.issue=6&rft.spage=5534&rft.epage=5549&rft.pages=5534-5549&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3159539&rft_dat=%3Cproquest_RIE%3E2808830392%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808830392&rft_id=info:pmid/&rft_ieee_id=9736679&rfr_iscdi=true |