A Knowledge-Enriched Ensemble Method for Word Embedding and Multi-Sense Embedding

Representing words as embeddings has been proven to be successful in improving the performance in many natural language processing tasks. Different from the traditional methods that learn the embeddings from large text corpora, ensemble methods have been proposed to leverage the merits of pre-traine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-06, Vol.35 (6), p.5534-5549
Hauptverfasser: Fang, Lanting, Luo, Yong, Feng, Kaiyu, Zhao, Kaiqi, Hu, Aiqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5549
container_issue 6
container_start_page 5534
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Fang, Lanting
Luo, Yong
Feng, Kaiyu
Zhao, Kaiqi
Hu, Aiqun
description Representing words as embeddings has been proven to be successful in improving the performance in many natural language processing tasks. Different from the traditional methods that learn the embeddings from large text corpora, ensemble methods have been proposed to leverage the merits of pre-trained word embeddings as well as external semantic sources. In this paper, we propose a knowledge-enriched ensemble method to combine information from both knowledge graphs and pre-trained word embeddings. Specifically, we propose an attention network to retrofit the semantic information in the lexical knowledge graph into the pre-trained word embeddings. In addition, we further extend our method to contextual word embeddings and multi-sense embeddings. Extensive experiments demonstrate that the proposed word embeddings outperform the state-of-the-art models in word analogy, word similarity and several downstream tasks. The proposed word sense embeddings outperform the state-of-the-art models in word similarity and word sense induction tasks.
doi_str_mv 10.1109/TKDE.2022.3159539
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2808830392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9736679</ieee_id><sourcerecordid>2808830392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-5e29704be448bad371c6ddaf45425b97d07bd73e6f9c986d8a9fd4a3195378c23</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsFZ_gHhZ8Lx1v5LdPZYaP2iLiBWPyyY7aVPSbN2kiP_ehIqeZmCed4Z5ELpmdMIYNXer-X024ZTziWCJSYQ5QSOWJJpwZthp31PJiBRSnaOLtt1SSrXSbIRep3jehK8a_BpI1sSq2IDHWdPCLq8BL6HbBI_LEPFHiP1gl4P3VbPGrvF4eai7irxBT_9PLtFZ6eoWrn7rGL0_ZKvZE1m8PD7PpgtSCJF2JAFuFJU5SKlz54ViReq9K2UieZIb5anKvRKQlqYwOvXamdJLJ1j_nNIFF2N0e9y7j-HzAG1nt-EQm_6k5ZpqLagwA8WOVBFD20Yo7T5WOxe_LaN2MGcHc3YwZ3_N9ZmbY6YCgD_eKJGmyogfhIpo1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808830392</pqid></control><display><type>article</type><title>A Knowledge-Enriched Ensemble Method for Word Embedding and Multi-Sense Embedding</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Lanting ; Luo, Yong ; Feng, Kaiyu ; Zhao, Kaiqi ; Hu, Aiqun</creator><creatorcontrib>Fang, Lanting ; Luo, Yong ; Feng, Kaiyu ; Zhao, Kaiqi ; Hu, Aiqun</creatorcontrib><description>Representing words as embeddings has been proven to be successful in improving the performance in many natural language processing tasks. Different from the traditional methods that learn the embeddings from large text corpora, ensemble methods have been proposed to leverage the merits of pre-trained word embeddings as well as external semantic sources. In this paper, we propose a knowledge-enriched ensemble method to combine information from both knowledge graphs and pre-trained word embeddings. Specifically, we propose an attention network to retrofit the semantic information in the lexical knowledge graph into the pre-trained word embeddings. In addition, we further extend our method to contextual word embeddings and multi-sense embeddings. Extensive experiments demonstrate that the proposed word embeddings outperform the state-of-the-art models in word analogy, word similarity and several downstream tasks. The proposed word sense embeddings outperform the state-of-the-art models in word similarity and word sense induction tasks.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3159539</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bit error rate ; Context modeling ; Embedding ; ensemble model ; Knowledge engineering ; knowledge graph ; Knowledge representation ; multi-sense embedding ; Natural language processing ; Retrofitting ; Semantics ; Similarity ; Task analysis ; Vocabulary ; Wheels ; Word embedding ; Words (language)</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-06, Vol.35 (6), p.5534-5549</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-5e29704be448bad371c6ddaf45425b97d07bd73e6f9c986d8a9fd4a3195378c23</citedby><cites>FETCH-LOGICAL-c336t-5e29704be448bad371c6ddaf45425b97d07bd73e6f9c986d8a9fd4a3195378c23</cites><orcidid>0000-0002-4196-9366 ; 0000-0002-2296-6370 ; 0000-0002-0984-1629 ; 0000-0002-0398-4899 ; 0000-0002-1374-395X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9736679$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9736679$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang, Lanting</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><creatorcontrib>Feng, Kaiyu</creatorcontrib><creatorcontrib>Zhao, Kaiqi</creatorcontrib><creatorcontrib>Hu, Aiqun</creatorcontrib><title>A Knowledge-Enriched Ensemble Method for Word Embedding and Multi-Sense Embedding</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Representing words as embeddings has been proven to be successful in improving the performance in many natural language processing tasks. Different from the traditional methods that learn the embeddings from large text corpora, ensemble methods have been proposed to leverage the merits of pre-trained word embeddings as well as external semantic sources. In this paper, we propose a knowledge-enriched ensemble method to combine information from both knowledge graphs and pre-trained word embeddings. Specifically, we propose an attention network to retrofit the semantic information in the lexical knowledge graph into the pre-trained word embeddings. In addition, we further extend our method to contextual word embeddings and multi-sense embeddings. Extensive experiments demonstrate that the proposed word embeddings outperform the state-of-the-art models in word analogy, word similarity and several downstream tasks. The proposed word sense embeddings outperform the state-of-the-art models in word similarity and word sense induction tasks.</description><subject>Bit error rate</subject><subject>Context modeling</subject><subject>Embedding</subject><subject>ensemble model</subject><subject>Knowledge engineering</subject><subject>knowledge graph</subject><subject>Knowledge representation</subject><subject>multi-sense embedding</subject><subject>Natural language processing</subject><subject>Retrofitting</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Task analysis</subject><subject>Vocabulary</subject><subject>Wheels</subject><subject>Word embedding</subject><subject>Words (language)</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1Lw0AQhhdRsFZ_gHhZ8Lx1v5LdPZYaP2iLiBWPyyY7aVPSbN2kiP_ehIqeZmCed4Z5ELpmdMIYNXer-X024ZTziWCJSYQ5QSOWJJpwZthp31PJiBRSnaOLtt1SSrXSbIRep3jehK8a_BpI1sSq2IDHWdPCLq8BL6HbBI_LEPFHiP1gl4P3VbPGrvF4eai7irxBT_9PLtFZ6eoWrn7rGL0_ZKvZE1m8PD7PpgtSCJF2JAFuFJU5SKlz54ViReq9K2UieZIb5anKvRKQlqYwOvXamdJLJ1j_nNIFF2N0e9y7j-HzAG1nt-EQm_6k5ZpqLagwA8WOVBFD20Yo7T5WOxe_LaN2MGcHc3YwZ3_N9ZmbY6YCgD_eKJGmyogfhIpo1g</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Fang, Lanting</creator><creator>Luo, Yong</creator><creator>Feng, Kaiyu</creator><creator>Zhao, Kaiqi</creator><creator>Hu, Aiqun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4196-9366</orcidid><orcidid>https://orcid.org/0000-0002-2296-6370</orcidid><orcidid>https://orcid.org/0000-0002-0984-1629</orcidid><orcidid>https://orcid.org/0000-0002-0398-4899</orcidid><orcidid>https://orcid.org/0000-0002-1374-395X</orcidid></search><sort><creationdate>20230601</creationdate><title>A Knowledge-Enriched Ensemble Method for Word Embedding and Multi-Sense Embedding</title><author>Fang, Lanting ; Luo, Yong ; Feng, Kaiyu ; Zhao, Kaiqi ; Hu, Aiqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-5e29704be448bad371c6ddaf45425b97d07bd73e6f9c986d8a9fd4a3195378c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bit error rate</topic><topic>Context modeling</topic><topic>Embedding</topic><topic>ensemble model</topic><topic>Knowledge engineering</topic><topic>knowledge graph</topic><topic>Knowledge representation</topic><topic>multi-sense embedding</topic><topic>Natural language processing</topic><topic>Retrofitting</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Task analysis</topic><topic>Vocabulary</topic><topic>Wheels</topic><topic>Word embedding</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Lanting</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><creatorcontrib>Feng, Kaiyu</creatorcontrib><creatorcontrib>Zhao, Kaiqi</creatorcontrib><creatorcontrib>Hu, Aiqun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, Lanting</au><au>Luo, Yong</au><au>Feng, Kaiyu</au><au>Zhao, Kaiqi</au><au>Hu, Aiqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Knowledge-Enriched Ensemble Method for Word Embedding and Multi-Sense Embedding</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>6</issue><spage>5534</spage><epage>5549</epage><pages>5534-5549</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Representing words as embeddings has been proven to be successful in improving the performance in many natural language processing tasks. Different from the traditional methods that learn the embeddings from large text corpora, ensemble methods have been proposed to leverage the merits of pre-trained word embeddings as well as external semantic sources. In this paper, we propose a knowledge-enriched ensemble method to combine information from both knowledge graphs and pre-trained word embeddings. Specifically, we propose an attention network to retrofit the semantic information in the lexical knowledge graph into the pre-trained word embeddings. In addition, we further extend our method to contextual word embeddings and multi-sense embeddings. Extensive experiments demonstrate that the proposed word embeddings outperform the state-of-the-art models in word analogy, word similarity and several downstream tasks. The proposed word sense embeddings outperform the state-of-the-art models in word similarity and word sense induction tasks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3159539</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4196-9366</orcidid><orcidid>https://orcid.org/0000-0002-2296-6370</orcidid><orcidid>https://orcid.org/0000-0002-0984-1629</orcidid><orcidid>https://orcid.org/0000-0002-0398-4899</orcidid><orcidid>https://orcid.org/0000-0002-1374-395X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-06, Vol.35 (6), p.5534-5549
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_journals_2808830392
source IEEE Electronic Library (IEL)
subjects Bit error rate
Context modeling
Embedding
ensemble model
Knowledge engineering
knowledge graph
Knowledge representation
multi-sense embedding
Natural language processing
Retrofitting
Semantics
Similarity
Task analysis
Vocabulary
Wheels
Word embedding
Words (language)
title A Knowledge-Enriched Ensemble Method for Word Embedding and Multi-Sense Embedding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Knowledge-Enriched%20Ensemble%20Method%20for%20Word%20Embedding%20and%20Multi-Sense%20Embedding&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Fang,%20Lanting&rft.date=2023-06-01&rft.volume=35&rft.issue=6&rft.spage=5534&rft.epage=5549&rft.pages=5534-5549&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3159539&rft_dat=%3Cproquest_RIE%3E2808830392%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808830392&rft_id=info:pmid/&rft_ieee_id=9736679&rfr_iscdi=true