Synthesis of zinc oxide based nitrogen doped graphene oxide with polyaniline (ZnO/N-GO/PANI) flow electrode for desalination application using flow capacitive deionization
This work reported the synthesis of zinc oxide (ZnO) based nitrogen doped graphene oxide (N-GO) with polyaniline (PANI) composite (ZnO/N-GO/PANI) as a potential flow electrode for flow capacitive deionization (FCDI). The prepared ZnO/N-GO/PANI composite was characterized for its structural property,...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2023-05, Vol.34 (13), p.1081, Article 1081 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 1081 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 34 |
creator | Mansoor, Hameed Hussain Ahmed Thomas, Santhoshini Priya Ramanujam, Saravanathamizhan Mohan, Nikhil Natesan, Balasubramanian |
description | This work reported the synthesis of zinc oxide (ZnO) based nitrogen doped graphene oxide (N-GO) with polyaniline (PANI) composite (ZnO/N-GO/PANI) as a potential flow electrode for flow capacitive deionization (FCDI). The prepared ZnO/N-GO/PANI composite was characterized for its structural property, stability, thermal decomposition and surface area analysis using X-ray diffractometer (XRD), scanning electron microscope (SEM), thermo-gravimetric analyzer (TGA) and Brunauer–Emmett–Teller (BET) respectively. Electrochemical studies were performed for the ZnO/N-GO/PANI composite using an electrochemical workstation with a three-electrode setup. SEM analysis revealed that the ZnO/N-GO/PANI composite architectures are made up of spherical and flake-like particles with an average particle size of ~ 32 nm. XRD results confirmed the crystalline nature of the ZnO/N-GO/PANI composite with sharp and intense peaks. BET analysis revealed that ZnO/N-GO/PANI composite has a greater surface area and pore size of 31.65 m
2
g
−1
and 66.981 nm respectively than ZnO/N-GO composite of 15.98 m
2
g
−1
and 42.09 nm. The prepared ZnO/N-GO/PANI composite exhibited a higher specific capacitance of 628.4 F g
−1
in 0.1 M KCl electrolyte solution determined using cyclic voltammetry (CV) studies. The proposed ZnO/N-GO/PANI composite was identified to be a favourable electrode for flow capacitive deionization (FCDI) technique. The FCDI results revealed that ZnO/N-GO/PANI flow electrode has a high electrosorption capacity (288 mg g
−1
) and desalinating efficiency (38.1%) under a 1000 mg L
−1
of sodium chloride (NaCl) solution at 1.2 V. Therefore, the proposed ZnO/N-GO/PANI composite was identified to be a promising electrode material for FCDI operation. |
doi_str_mv | 10.1007/s10854-023-10536-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2808760834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808760834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-af4279c81d0cc21835833175e1fb5371c1620aad036fa9380f3e534318d8f8a93</originalsourceid><addsrcrecordid>eNp9kc1OGzEUhS1UJNLAC7CyxKZduLm2xzPOMoragIQIElSq2FjGYydGU3tqTxrCK_Ul6zJI3bG6f985d3EQOqfwhQI0s0xBiooA44SC4DWhR2hCRcNJJdmPD2gCc9GQSjB2gj7m_AQAdcXlBP25O4Rha7PPODr84oPB8dm3Fj_qbFsc_JDixgbcxr6Mm6T7rQ32jdn7YYv72B108J0v608PYT27Iav17HZxc_UZuy7use2sKS6FdzHh1mZdWD34GLDu-86bsd9lHzajwuheGz_437bg5eZfXpFTdOx0l-3ZW52i79--3i8vyfV6dbVcXBPDGhiIdhVr5kbSFoxhVHIhOaeNsNQ9Ct5QQ2sGWrfAa6fnXILjVvCKU9lKJ8tmii5G3z7FXzubB_UUdymUl4pJkE0NsuBTxEbKpJhzsk71yf_U6aAoqH-hqDEUVUJRr6EoWkR8FOUCh41N_63fUf0FkXiSBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808760834</pqid></control><display><type>article</type><title>Synthesis of zinc oxide based nitrogen doped graphene oxide with polyaniline (ZnO/N-GO/PANI) flow electrode for desalination application using flow capacitive deionization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mansoor, Hameed Hussain Ahmed ; Thomas, Santhoshini Priya ; Ramanujam, Saravanathamizhan ; Mohan, Nikhil ; Natesan, Balasubramanian</creator><creatorcontrib>Mansoor, Hameed Hussain Ahmed ; Thomas, Santhoshini Priya ; Ramanujam, Saravanathamizhan ; Mohan, Nikhil ; Natesan, Balasubramanian</creatorcontrib><description>This work reported the synthesis of zinc oxide (ZnO) based nitrogen doped graphene oxide (N-GO) with polyaniline (PANI) composite (ZnO/N-GO/PANI) as a potential flow electrode for flow capacitive deionization (FCDI). The prepared ZnO/N-GO/PANI composite was characterized for its structural property, stability, thermal decomposition and surface area analysis using X-ray diffractometer (XRD), scanning electron microscope (SEM), thermo-gravimetric analyzer (TGA) and Brunauer–Emmett–Teller (BET) respectively. Electrochemical studies were performed for the ZnO/N-GO/PANI composite using an electrochemical workstation with a three-electrode setup. SEM analysis revealed that the ZnO/N-GO/PANI composite architectures are made up of spherical and flake-like particles with an average particle size of ~ 32 nm. XRD results confirmed the crystalline nature of the ZnO/N-GO/PANI composite with sharp and intense peaks. BET analysis revealed that ZnO/N-GO/PANI composite has a greater surface area and pore size of 31.65 m
2
g
−1
and 66.981 nm respectively than ZnO/N-GO composite of 15.98 m
2
g
−1
and 42.09 nm. The prepared ZnO/N-GO/PANI composite exhibited a higher specific capacitance of 628.4 F g
−1
in 0.1 M KCl electrolyte solution determined using cyclic voltammetry (CV) studies. The proposed ZnO/N-GO/PANI composite was identified to be a favourable electrode for flow capacitive deionization (FCDI) technique. The FCDI results revealed that ZnO/N-GO/PANI flow electrode has a high electrosorption capacity (288 mg g
−1
) and desalinating efficiency (38.1%) under a 1000 mg L
−1
of sodium chloride (NaCl) solution at 1.2 V. Therefore, the proposed ZnO/N-GO/PANI composite was identified to be a promising electrode material for FCDI operation.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-10536-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deionization ; Desalination ; Electrode materials ; Electrodes ; Graphene ; Materials Science ; Nitrogen ; Optical and Electronic Materials ; Polyanilines ; Pore size ; Potential flow ; Scanning electron microscopy ; Sodium chloride ; Stability analysis ; Structural stability ; Surface area ; Surface stability ; Synthesis ; Thermal decomposition ; Workstations ; X-ray diffraction ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of materials science. Materials in electronics, 2023-05, Vol.34 (13), p.1081, Article 1081</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-af4279c81d0cc21835833175e1fb5371c1620aad036fa9380f3e534318d8f8a93</cites><orcidid>0000-0003-2532-6819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-10536-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-10536-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mansoor, Hameed Hussain Ahmed</creatorcontrib><creatorcontrib>Thomas, Santhoshini Priya</creatorcontrib><creatorcontrib>Ramanujam, Saravanathamizhan</creatorcontrib><creatorcontrib>Mohan, Nikhil</creatorcontrib><creatorcontrib>Natesan, Balasubramanian</creatorcontrib><title>Synthesis of zinc oxide based nitrogen doped graphene oxide with polyaniline (ZnO/N-GO/PANI) flow electrode for desalination application using flow capacitive deionization</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>This work reported the synthesis of zinc oxide (ZnO) based nitrogen doped graphene oxide (N-GO) with polyaniline (PANI) composite (ZnO/N-GO/PANI) as a potential flow electrode for flow capacitive deionization (FCDI). The prepared ZnO/N-GO/PANI composite was characterized for its structural property, stability, thermal decomposition and surface area analysis using X-ray diffractometer (XRD), scanning electron microscope (SEM), thermo-gravimetric analyzer (TGA) and Brunauer–Emmett–Teller (BET) respectively. Electrochemical studies were performed for the ZnO/N-GO/PANI composite using an electrochemical workstation with a three-electrode setup. SEM analysis revealed that the ZnO/N-GO/PANI composite architectures are made up of spherical and flake-like particles with an average particle size of ~ 32 nm. XRD results confirmed the crystalline nature of the ZnO/N-GO/PANI composite with sharp and intense peaks. BET analysis revealed that ZnO/N-GO/PANI composite has a greater surface area and pore size of 31.65 m
2
g
−1
and 66.981 nm respectively than ZnO/N-GO composite of 15.98 m
2
g
−1
and 42.09 nm. The prepared ZnO/N-GO/PANI composite exhibited a higher specific capacitance of 628.4 F g
−1
in 0.1 M KCl electrolyte solution determined using cyclic voltammetry (CV) studies. The proposed ZnO/N-GO/PANI composite was identified to be a favourable electrode for flow capacitive deionization (FCDI) technique. The FCDI results revealed that ZnO/N-GO/PANI flow electrode has a high electrosorption capacity (288 mg g
−1
) and desalinating efficiency (38.1%) under a 1000 mg L
−1
of sodium chloride (NaCl) solution at 1.2 V. Therefore, the proposed ZnO/N-GO/PANI composite was identified to be a promising electrode material for FCDI operation.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deionization</subject><subject>Desalination</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Graphene</subject><subject>Materials Science</subject><subject>Nitrogen</subject><subject>Optical and Electronic Materials</subject><subject>Polyanilines</subject><subject>Pore size</subject><subject>Potential flow</subject><subject>Scanning electron microscopy</subject><subject>Sodium chloride</subject><subject>Stability analysis</subject><subject>Structural stability</subject><subject>Surface area</subject><subject>Surface stability</subject><subject>Synthesis</subject><subject>Thermal decomposition</subject><subject>Workstations</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1OGzEUhS1UJNLAC7CyxKZduLm2xzPOMoragIQIElSq2FjGYydGU3tqTxrCK_Ul6zJI3bG6f985d3EQOqfwhQI0s0xBiooA44SC4DWhR2hCRcNJJdmPD2gCc9GQSjB2gj7m_AQAdcXlBP25O4Rha7PPODr84oPB8dm3Fj_qbFsc_JDixgbcxr6Mm6T7rQ32jdn7YYv72B108J0v608PYT27Iav17HZxc_UZuy7use2sKS6FdzHh1mZdWD34GLDu-86bsd9lHzajwuheGz_437bg5eZfXpFTdOx0l-3ZW52i79--3i8vyfV6dbVcXBPDGhiIdhVr5kbSFoxhVHIhOaeNsNQ9Ct5QQ2sGWrfAa6fnXILjVvCKU9lKJ8tmii5G3z7FXzubB_UUdymUl4pJkE0NsuBTxEbKpJhzsk71yf_U6aAoqH-hqDEUVUJRr6EoWkR8FOUCh41N_63fUf0FkXiSBQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Mansoor, Hameed Hussain Ahmed</creator><creator>Thomas, Santhoshini Priya</creator><creator>Ramanujam, Saravanathamizhan</creator><creator>Mohan, Nikhil</creator><creator>Natesan, Balasubramanian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2532-6819</orcidid></search><sort><creationdate>20230501</creationdate><title>Synthesis of zinc oxide based nitrogen doped graphene oxide with polyaniline (ZnO/N-GO/PANI) flow electrode for desalination application using flow capacitive deionization</title><author>Mansoor, Hameed Hussain Ahmed ; Thomas, Santhoshini Priya ; Ramanujam, Saravanathamizhan ; Mohan, Nikhil ; Natesan, Balasubramanian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-af4279c81d0cc21835833175e1fb5371c1620aad036fa9380f3e534318d8f8a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deionization</topic><topic>Desalination</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Graphene</topic><topic>Materials Science</topic><topic>Nitrogen</topic><topic>Optical and Electronic Materials</topic><topic>Polyanilines</topic><topic>Pore size</topic><topic>Potential flow</topic><topic>Scanning electron microscopy</topic><topic>Sodium chloride</topic><topic>Stability analysis</topic><topic>Structural stability</topic><topic>Surface area</topic><topic>Surface stability</topic><topic>Synthesis</topic><topic>Thermal decomposition</topic><topic>Workstations</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansoor, Hameed Hussain Ahmed</creatorcontrib><creatorcontrib>Thomas, Santhoshini Priya</creatorcontrib><creatorcontrib>Ramanujam, Saravanathamizhan</creatorcontrib><creatorcontrib>Mohan, Nikhil</creatorcontrib><creatorcontrib>Natesan, Balasubramanian</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansoor, Hameed Hussain Ahmed</au><au>Thomas, Santhoshini Priya</au><au>Ramanujam, Saravanathamizhan</au><au>Mohan, Nikhil</au><au>Natesan, Balasubramanian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of zinc oxide based nitrogen doped graphene oxide with polyaniline (ZnO/N-GO/PANI) flow electrode for desalination application using flow capacitive deionization</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>34</volume><issue>13</issue><spage>1081</spage><pages>1081-</pages><artnum>1081</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>This work reported the synthesis of zinc oxide (ZnO) based nitrogen doped graphene oxide (N-GO) with polyaniline (PANI) composite (ZnO/N-GO/PANI) as a potential flow electrode for flow capacitive deionization (FCDI). The prepared ZnO/N-GO/PANI composite was characterized for its structural property, stability, thermal decomposition and surface area analysis using X-ray diffractometer (XRD), scanning electron microscope (SEM), thermo-gravimetric analyzer (TGA) and Brunauer–Emmett–Teller (BET) respectively. Electrochemical studies were performed for the ZnO/N-GO/PANI composite using an electrochemical workstation with a three-electrode setup. SEM analysis revealed that the ZnO/N-GO/PANI composite architectures are made up of spherical and flake-like particles with an average particle size of ~ 32 nm. XRD results confirmed the crystalline nature of the ZnO/N-GO/PANI composite with sharp and intense peaks. BET analysis revealed that ZnO/N-GO/PANI composite has a greater surface area and pore size of 31.65 m
2
g
−1
and 66.981 nm respectively than ZnO/N-GO composite of 15.98 m
2
g
−1
and 42.09 nm. The prepared ZnO/N-GO/PANI composite exhibited a higher specific capacitance of 628.4 F g
−1
in 0.1 M KCl electrolyte solution determined using cyclic voltammetry (CV) studies. The proposed ZnO/N-GO/PANI composite was identified to be a favourable electrode for flow capacitive deionization (FCDI) technique. The FCDI results revealed that ZnO/N-GO/PANI flow electrode has a high electrosorption capacity (288 mg g
−1
) and desalinating efficiency (38.1%) under a 1000 mg L
−1
of sodium chloride (NaCl) solution at 1.2 V. Therefore, the proposed ZnO/N-GO/PANI composite was identified to be a promising electrode material for FCDI operation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-10536-1</doi><orcidid>https://orcid.org/0000-0003-2532-6819</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2023-05, Vol.34 (13), p.1081, Article 1081 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2808760834 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Deionization Desalination Electrode materials Electrodes Graphene Materials Science Nitrogen Optical and Electronic Materials Polyanilines Pore size Potential flow Scanning electron microscopy Sodium chloride Stability analysis Structural stability Surface area Surface stability Synthesis Thermal decomposition Workstations X-ray diffraction Zinc oxide Zinc oxides |
title | Synthesis of zinc oxide based nitrogen doped graphene oxide with polyaniline (ZnO/N-GO/PANI) flow electrode for desalination application using flow capacitive deionization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20zinc%20oxide%20based%20nitrogen%20doped%20graphene%20oxide%20with%20polyaniline%20(ZnO/N-GO/PANI)%20flow%20electrode%20for%20desalination%20application%20using%20flow%20capacitive%20deionization&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Mansoor,%20Hameed%20Hussain%20Ahmed&rft.date=2023-05-01&rft.volume=34&rft.issue=13&rft.spage=1081&rft.pages=1081-&rft.artnum=1081&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-10536-1&rft_dat=%3Cproquest_cross%3E2808760834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808760834&rft_id=info:pmid/&rfr_iscdi=true |