Fusarium verticillioides NAT1 (FDB2) N‐malonyltransferase is structurally, functionally and phylogenetically distinct from its N‐acetyltransferase (NAT) homologues
Fusarium endophytes damage cereal crops and contaminate produce with mycotoxins. Those fungi overcome the main chemical defence of host via detoxification by a malonyl‐CoA‐dependent enzyme homologous to xenobiotic metabolizing arylamine N‐acetyltransferase (NAT). In Fusarium verticillioides (teleomo...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2023-05, Vol.290 (9), p.2412-2436 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2436 |
---|---|
container_issue | 9 |
container_start_page | 2412 |
container_title | The FEBS journal |
container_volume | 290 |
creator | Karagianni, Eleni‐Pavlina Kontomina, Evanthia Lowe, Edward D. Athanasopoulos, Konstantinos Papanikolaou, Georgia Garefalaki, Vasiliki Kotseli, Varvara Zaliou, Sofia Grimaud, Tom Arvaniti, Konstantina Tsatiri, Maria‐Aggeliki Fakis, Giannoulis Glenn, Anthony E. Roversi, Pietro Abuhammad, Areej Ryan, Ali Sim, Robert B. Sim, Edith Boukouvala, Sotiria |
description | Fusarium endophytes damage cereal crops and contaminate produce with mycotoxins. Those fungi overcome the main chemical defence of host via detoxification by a malonyl‐CoA‐dependent enzyme homologous to xenobiotic metabolizing arylamine N‐acetyltransferase (NAT). In Fusarium verticillioides (teleomorph Gibberella moniliformis, GIBMO), this N‐malonyltransferase activity is attributed to (GIBMO)NAT1, and the fungus has two additional isoenzymes, (GIBMO)NAT3 (N‐acetyltransferase) and (GIBMO)NAT2 (unknown function). We present the crystallographic structure of (GIBMO)NAT1, also modelling other fungal NAT homologues. Monomeric (GIBMO)NAT1 is distinctive, with access to the catalytic core through two “tunnel‐like” entries separated by a “bridge‐like” helix. In the quaternary arrangement, (GIBMO)NAT1 monomers interact in pairs along an extensive interface whereby one entry of each monomer is covered by the N‐terminus of the other monomer. Although monomeric (GIBMO)NAT1 apparently accommodates acetyl‐CoA better than malonyl‐CoA, dimerization changes the active site to allow malonyl‐CoA to reach the catalytic triad (Cys110, His158 and Asp173) via the single uncovered entry, and anchor its terminal carboxyl‐group via hydrogen bonds to Arg109, Asn157 and Thr261. Lacking a terminal carboxyl‐group, acetyl‐CoA cannot form such stabilizing interactions, while longer acyl‐CoAs enter the active site but cannot reach catalytic Cys. Other NAT isoenzymes lack such structural features, with (GIBMO)NAT3 resembling bacterial NATs and (GIBMO)NAT2 adopting a structure intermediate between (GIBMO)NAT1 and (GIBMO)NAT3. Biochemical assays confirmed differential donor substrate preference of (GIBMO)NAT isoenzymes, with phylogenetic analysis demonstrating evolutionary separation. Given the role of (GIBMO)NAT1 in enhancing Fusarium pathogenicity, unravelling the structure and function of this enzyme may benefit research into more targeted strategies for pathogen control.
Fusarium endophytes damage cereal crops and contaminate produce with mycotoxins. Those fungi overcome the chemical defence of host via a malonyl‐CoA dependent enzyme homologous to xenobiotic metabolizing arylamine N‐acetyltransferase. Crystallography demonstrates that this N‐malonyltransferase has evolved to selectively employ malonyl‐CoA, versus acetyl‐CoA, via a remarkable adaptation of its functional unit and catalytic mechanism, involving protein dimerization and interaction of specific active site residues with the |
doi_str_mv | 10.1111/febs.16642 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2808522411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808522411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-97a77fef2dc175d67de6866d9baafe535e0cf8e1357b57e343375566ef2583ca3</originalsourceid><addsrcrecordid>eNp9kc9O3DAQhy1ExQLlwgNUlrhAxdI4ju3sEShLkVb00EXiFnmdcTFy4sV2QLnxCH2LvhdPgvcPSFzwZezRN9_I-iG0T7ITks4PDbNwQjgv8g20TUSRDwvOys33e3E7QDsh3GcZZcVotIUGlBNRFrzcRv_HXZDedA1-BB-NMtYaZ2oI-Pp0SvDh-OdZfoSvX57_NdK6trfRyzZo8DIANgGH6DsVOy-t7Y-x7loVjWsXLyzbGs_veuv-QgtJvWzWJkSTIKy9a7CJYemWCuJH9WFaf4TvXOPSfAfhK_qipQ2wt6676GZ8MT3_NZz8vrw6P50MFWUiH46EFEKDzmtFBKu5qIGXnNejmZQaGGWQKV0CSfCMCaAFpYIxztMEK6mSdBcdrLxz7x7S3ljdu86nD4UqL7OS5XlBSKK-ryjlXQgedDX3ppG-r0hWLTKpFplUy0wS_G2t7GYN1O_oWwgJICvgyVjoP1FV44uzPyvpKxqOnGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808522411</pqid></control><display><type>article</type><title>Fusarium verticillioides NAT1 (FDB2) N‐malonyltransferase is structurally, functionally and phylogenetically distinct from its N‐acetyltransferase (NAT) homologues</title><source>MEDLINE</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Karagianni, Eleni‐Pavlina ; Kontomina, Evanthia ; Lowe, Edward D. ; Athanasopoulos, Konstantinos ; Papanikolaou, Georgia ; Garefalaki, Vasiliki ; Kotseli, Varvara ; Zaliou, Sofia ; Grimaud, Tom ; Arvaniti, Konstantina ; Tsatiri, Maria‐Aggeliki ; Fakis, Giannoulis ; Glenn, Anthony E. ; Roversi, Pietro ; Abuhammad, Areej ; Ryan, Ali ; Sim, Robert B. ; Sim, Edith ; Boukouvala, Sotiria</creator><creatorcontrib>Karagianni, Eleni‐Pavlina ; Kontomina, Evanthia ; Lowe, Edward D. ; Athanasopoulos, Konstantinos ; Papanikolaou, Georgia ; Garefalaki, Vasiliki ; Kotseli, Varvara ; Zaliou, Sofia ; Grimaud, Tom ; Arvaniti, Konstantina ; Tsatiri, Maria‐Aggeliki ; Fakis, Giannoulis ; Glenn, Anthony E. ; Roversi, Pietro ; Abuhammad, Areej ; Ryan, Ali ; Sim, Robert B. ; Sim, Edith ; Boukouvala, Sotiria</creatorcontrib><description>Fusarium endophytes damage cereal crops and contaminate produce with mycotoxins. Those fungi overcome the main chemical defence of host via detoxification by a malonyl‐CoA‐dependent enzyme homologous to xenobiotic metabolizing arylamine N‐acetyltransferase (NAT). In Fusarium verticillioides (teleomorph Gibberella moniliformis, GIBMO), this N‐malonyltransferase activity is attributed to (GIBMO)NAT1, and the fungus has two additional isoenzymes, (GIBMO)NAT3 (N‐acetyltransferase) and (GIBMO)NAT2 (unknown function). We present the crystallographic structure of (GIBMO)NAT1, also modelling other fungal NAT homologues. Monomeric (GIBMO)NAT1 is distinctive, with access to the catalytic core through two “tunnel‐like” entries separated by a “bridge‐like” helix. In the quaternary arrangement, (GIBMO)NAT1 monomers interact in pairs along an extensive interface whereby one entry of each monomer is covered by the N‐terminus of the other monomer. Although monomeric (GIBMO)NAT1 apparently accommodates acetyl‐CoA better than malonyl‐CoA, dimerization changes the active site to allow malonyl‐CoA to reach the catalytic triad (Cys110, His158 and Asp173) via the single uncovered entry, and anchor its terminal carboxyl‐group via hydrogen bonds to Arg109, Asn157 and Thr261. Lacking a terminal carboxyl‐group, acetyl‐CoA cannot form such stabilizing interactions, while longer acyl‐CoAs enter the active site but cannot reach catalytic Cys. Other NAT isoenzymes lack such structural features, with (GIBMO)NAT3 resembling bacterial NATs and (GIBMO)NAT2 adopting a structure intermediate between (GIBMO)NAT1 and (GIBMO)NAT3. Biochemical assays confirmed differential donor substrate preference of (GIBMO)NAT isoenzymes, with phylogenetic analysis demonstrating evolutionary separation. Given the role of (GIBMO)NAT1 in enhancing Fusarium pathogenicity, unravelling the structure and function of this enzyme may benefit research into more targeted strategies for pathogen control.
Fusarium endophytes damage cereal crops and contaminate produce with mycotoxins. Those fungi overcome the chemical defence of host via a malonyl‐CoA dependent enzyme homologous to xenobiotic metabolizing arylamine N‐acetyltransferase. Crystallography demonstrates that this N‐malonyltransferase has evolved to selectively employ malonyl‐CoA, versus acetyl‐CoA, via a remarkable adaptation of its functional unit and catalytic mechanism, involving protein dimerization and interaction of specific active site residues with the terminal carboxyl‐group of malonate.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.16642</identifier><identifier>PMID: 36178468</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acetyl Coenzyme A ; Acetyltransferase ; Acetyltransferases ; Amines ; Arylamine N-Acetyltransferase - chemistry ; Arylamine N-Acetyltransferase - genetics ; Cereal crops ; Chemical defense ; Crop damage ; Crystal structure ; Crystallography ; Detoxification ; Dimerization ; Endophytes ; Enzymes ; FDB2 ; Fungi ; Fusarium ; Fusarium - genetics ; Fusarium verticillioides ; Homology ; Hydrogen bonding ; Hydrogen bonds ; Isoenzymes ; Isoenzymes - genetics ; malonyltransferase ; Monomers ; Mycotoxins ; NAT ; Organic compounds ; Pathogenicity ; Pathogens ; Perfect state ; Phylogeny ; Structure-function relationships ; Substrate preferences ; Substrates</subject><ispartof>The FEBS journal, 2023-05, Vol.290 (9), p.2412-2436</ispartof><rights>2022 Federation of European Biochemical Societies.</rights><rights>Copyright © 2023 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-97a77fef2dc175d67de6866d9baafe535e0cf8e1357b57e343375566ef2583ca3</citedby><cites>FETCH-LOGICAL-c3572-97a77fef2dc175d67de6866d9baafe535e0cf8e1357b57e343375566ef2583ca3</cites><orcidid>0000-0001-9280-9437 ; 0000-0003-1613-3943 ; 0000-0002-3162-5375 ; 0000-0002-4627-8185 ; 0000-0002-1757-0208 ; 0000-0003-4978-5059 ; 0000-0001-8329-1306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.16642$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.16642$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36178468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karagianni, Eleni‐Pavlina</creatorcontrib><creatorcontrib>Kontomina, Evanthia</creatorcontrib><creatorcontrib>Lowe, Edward D.</creatorcontrib><creatorcontrib>Athanasopoulos, Konstantinos</creatorcontrib><creatorcontrib>Papanikolaou, Georgia</creatorcontrib><creatorcontrib>Garefalaki, Vasiliki</creatorcontrib><creatorcontrib>Kotseli, Varvara</creatorcontrib><creatorcontrib>Zaliou, Sofia</creatorcontrib><creatorcontrib>Grimaud, Tom</creatorcontrib><creatorcontrib>Arvaniti, Konstantina</creatorcontrib><creatorcontrib>Tsatiri, Maria‐Aggeliki</creatorcontrib><creatorcontrib>Fakis, Giannoulis</creatorcontrib><creatorcontrib>Glenn, Anthony E.</creatorcontrib><creatorcontrib>Roversi, Pietro</creatorcontrib><creatorcontrib>Abuhammad, Areej</creatorcontrib><creatorcontrib>Ryan, Ali</creatorcontrib><creatorcontrib>Sim, Robert B.</creatorcontrib><creatorcontrib>Sim, Edith</creatorcontrib><creatorcontrib>Boukouvala, Sotiria</creatorcontrib><title>Fusarium verticillioides NAT1 (FDB2) N‐malonyltransferase is structurally, functionally and phylogenetically distinct from its N‐acetyltransferase (NAT) homologues</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Fusarium endophytes damage cereal crops and contaminate produce with mycotoxins. Those fungi overcome the main chemical defence of host via detoxification by a malonyl‐CoA‐dependent enzyme homologous to xenobiotic metabolizing arylamine N‐acetyltransferase (NAT). In Fusarium verticillioides (teleomorph Gibberella moniliformis, GIBMO), this N‐malonyltransferase activity is attributed to (GIBMO)NAT1, and the fungus has two additional isoenzymes, (GIBMO)NAT3 (N‐acetyltransferase) and (GIBMO)NAT2 (unknown function). We present the crystallographic structure of (GIBMO)NAT1, also modelling other fungal NAT homologues. Monomeric (GIBMO)NAT1 is distinctive, with access to the catalytic core through two “tunnel‐like” entries separated by a “bridge‐like” helix. In the quaternary arrangement, (GIBMO)NAT1 monomers interact in pairs along an extensive interface whereby one entry of each monomer is covered by the N‐terminus of the other monomer. Although monomeric (GIBMO)NAT1 apparently accommodates acetyl‐CoA better than malonyl‐CoA, dimerization changes the active site to allow malonyl‐CoA to reach the catalytic triad (Cys110, His158 and Asp173) via the single uncovered entry, and anchor its terminal carboxyl‐group via hydrogen bonds to Arg109, Asn157 and Thr261. Lacking a terminal carboxyl‐group, acetyl‐CoA cannot form such stabilizing interactions, while longer acyl‐CoAs enter the active site but cannot reach catalytic Cys. Other NAT isoenzymes lack such structural features, with (GIBMO)NAT3 resembling bacterial NATs and (GIBMO)NAT2 adopting a structure intermediate between (GIBMO)NAT1 and (GIBMO)NAT3. Biochemical assays confirmed differential donor substrate preference of (GIBMO)NAT isoenzymes, with phylogenetic analysis demonstrating evolutionary separation. Given the role of (GIBMO)NAT1 in enhancing Fusarium pathogenicity, unravelling the structure and function of this enzyme may benefit research into more targeted strategies for pathogen control.
Fusarium endophytes damage cereal crops and contaminate produce with mycotoxins. Those fungi overcome the chemical defence of host via a malonyl‐CoA dependent enzyme homologous to xenobiotic metabolizing arylamine N‐acetyltransferase. Crystallography demonstrates that this N‐malonyltransferase has evolved to selectively employ malonyl‐CoA, versus acetyl‐CoA, via a remarkable adaptation of its functional unit and catalytic mechanism, involving protein dimerization and interaction of specific active site residues with the terminal carboxyl‐group of malonate.</description><subject>Acetyl Coenzyme A</subject><subject>Acetyltransferase</subject><subject>Acetyltransferases</subject><subject>Amines</subject><subject>Arylamine N-Acetyltransferase - chemistry</subject><subject>Arylamine N-Acetyltransferase - genetics</subject><subject>Cereal crops</subject><subject>Chemical defense</subject><subject>Crop damage</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Detoxification</subject><subject>Dimerization</subject><subject>Endophytes</subject><subject>Enzymes</subject><subject>FDB2</subject><subject>Fungi</subject><subject>Fusarium</subject><subject>Fusarium - genetics</subject><subject>Fusarium verticillioides</subject><subject>Homology</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Isoenzymes</subject><subject>Isoenzymes - genetics</subject><subject>malonyltransferase</subject><subject>Monomers</subject><subject>Mycotoxins</subject><subject>NAT</subject><subject>Organic compounds</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Perfect state</subject><subject>Phylogeny</subject><subject>Structure-function relationships</subject><subject>Substrate preferences</subject><subject>Substrates</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9O3DAQhy1ExQLlwgNUlrhAxdI4ju3sEShLkVb00EXiFnmdcTFy4sV2QLnxCH2LvhdPgvcPSFzwZezRN9_I-iG0T7ITks4PDbNwQjgv8g20TUSRDwvOys33e3E7QDsh3GcZZcVotIUGlBNRFrzcRv_HXZDedA1-BB-NMtYaZ2oI-Pp0SvDh-OdZfoSvX57_NdK6trfRyzZo8DIANgGH6DsVOy-t7Y-x7loVjWsXLyzbGs_veuv-QgtJvWzWJkSTIKy9a7CJYemWCuJH9WFaf4TvXOPSfAfhK_qipQ2wt6676GZ8MT3_NZz8vrw6P50MFWUiH46EFEKDzmtFBKu5qIGXnNejmZQaGGWQKV0CSfCMCaAFpYIxztMEK6mSdBcdrLxz7x7S3ljdu86nD4UqL7OS5XlBSKK-ryjlXQgedDX3ppG-r0hWLTKpFplUy0wS_G2t7GYN1O_oWwgJICvgyVjoP1FV44uzPyvpKxqOnGw</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Karagianni, Eleni‐Pavlina</creator><creator>Kontomina, Evanthia</creator><creator>Lowe, Edward D.</creator><creator>Athanasopoulos, Konstantinos</creator><creator>Papanikolaou, Georgia</creator><creator>Garefalaki, Vasiliki</creator><creator>Kotseli, Varvara</creator><creator>Zaliou, Sofia</creator><creator>Grimaud, Tom</creator><creator>Arvaniti, Konstantina</creator><creator>Tsatiri, Maria‐Aggeliki</creator><creator>Fakis, Giannoulis</creator><creator>Glenn, Anthony E.</creator><creator>Roversi, Pietro</creator><creator>Abuhammad, Areej</creator><creator>Ryan, Ali</creator><creator>Sim, Robert B.</creator><creator>Sim, Edith</creator><creator>Boukouvala, Sotiria</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-9280-9437</orcidid><orcidid>https://orcid.org/0000-0003-1613-3943</orcidid><orcidid>https://orcid.org/0000-0002-3162-5375</orcidid><orcidid>https://orcid.org/0000-0002-4627-8185</orcidid><orcidid>https://orcid.org/0000-0002-1757-0208</orcidid><orcidid>https://orcid.org/0000-0003-4978-5059</orcidid><orcidid>https://orcid.org/0000-0001-8329-1306</orcidid></search><sort><creationdate>202305</creationdate><title>Fusarium verticillioides NAT1 (FDB2) N‐malonyltransferase is structurally, functionally and phylogenetically distinct from its N‐acetyltransferase (NAT) homologues</title><author>Karagianni, Eleni‐Pavlina ; Kontomina, Evanthia ; Lowe, Edward D. ; Athanasopoulos, Konstantinos ; Papanikolaou, Georgia ; Garefalaki, Vasiliki ; Kotseli, Varvara ; Zaliou, Sofia ; Grimaud, Tom ; Arvaniti, Konstantina ; Tsatiri, Maria‐Aggeliki ; Fakis, Giannoulis ; Glenn, Anthony E. ; Roversi, Pietro ; Abuhammad, Areej ; Ryan, Ali ; Sim, Robert B. ; Sim, Edith ; Boukouvala, Sotiria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-97a77fef2dc175d67de6866d9baafe535e0cf8e1357b57e343375566ef2583ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetyl Coenzyme A</topic><topic>Acetyltransferase</topic><topic>Acetyltransferases</topic><topic>Amines</topic><topic>Arylamine N-Acetyltransferase - chemistry</topic><topic>Arylamine N-Acetyltransferase - genetics</topic><topic>Cereal crops</topic><topic>Chemical defense</topic><topic>Crop damage</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Detoxification</topic><topic>Dimerization</topic><topic>Endophytes</topic><topic>Enzymes</topic><topic>FDB2</topic><topic>Fungi</topic><topic>Fusarium</topic><topic>Fusarium - genetics</topic><topic>Fusarium verticillioides</topic><topic>Homology</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Isoenzymes</topic><topic>Isoenzymes - genetics</topic><topic>malonyltransferase</topic><topic>Monomers</topic><topic>Mycotoxins</topic><topic>NAT</topic><topic>Organic compounds</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Perfect state</topic><topic>Phylogeny</topic><topic>Structure-function relationships</topic><topic>Substrate preferences</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karagianni, Eleni‐Pavlina</creatorcontrib><creatorcontrib>Kontomina, Evanthia</creatorcontrib><creatorcontrib>Lowe, Edward D.</creatorcontrib><creatorcontrib>Athanasopoulos, Konstantinos</creatorcontrib><creatorcontrib>Papanikolaou, Georgia</creatorcontrib><creatorcontrib>Garefalaki, Vasiliki</creatorcontrib><creatorcontrib>Kotseli, Varvara</creatorcontrib><creatorcontrib>Zaliou, Sofia</creatorcontrib><creatorcontrib>Grimaud, Tom</creatorcontrib><creatorcontrib>Arvaniti, Konstantina</creatorcontrib><creatorcontrib>Tsatiri, Maria‐Aggeliki</creatorcontrib><creatorcontrib>Fakis, Giannoulis</creatorcontrib><creatorcontrib>Glenn, Anthony E.</creatorcontrib><creatorcontrib>Roversi, Pietro</creatorcontrib><creatorcontrib>Abuhammad, Areej</creatorcontrib><creatorcontrib>Ryan, Ali</creatorcontrib><creatorcontrib>Sim, Robert B.</creatorcontrib><creatorcontrib>Sim, Edith</creatorcontrib><creatorcontrib>Boukouvala, Sotiria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karagianni, Eleni‐Pavlina</au><au>Kontomina, Evanthia</au><au>Lowe, Edward D.</au><au>Athanasopoulos, Konstantinos</au><au>Papanikolaou, Georgia</au><au>Garefalaki, Vasiliki</au><au>Kotseli, Varvara</au><au>Zaliou, Sofia</au><au>Grimaud, Tom</au><au>Arvaniti, Konstantina</au><au>Tsatiri, Maria‐Aggeliki</au><au>Fakis, Giannoulis</au><au>Glenn, Anthony E.</au><au>Roversi, Pietro</au><au>Abuhammad, Areej</au><au>Ryan, Ali</au><au>Sim, Robert B.</au><au>Sim, Edith</au><au>Boukouvala, Sotiria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusarium verticillioides NAT1 (FDB2) N‐malonyltransferase is structurally, functionally and phylogenetically distinct from its N‐acetyltransferase (NAT) homologues</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2023-05</date><risdate>2023</risdate><volume>290</volume><issue>9</issue><spage>2412</spage><epage>2436</epage><pages>2412-2436</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Fusarium endophytes damage cereal crops and contaminate produce with mycotoxins. Those fungi overcome the main chemical defence of host via detoxification by a malonyl‐CoA‐dependent enzyme homologous to xenobiotic metabolizing arylamine N‐acetyltransferase (NAT). In Fusarium verticillioides (teleomorph Gibberella moniliformis, GIBMO), this N‐malonyltransferase activity is attributed to (GIBMO)NAT1, and the fungus has two additional isoenzymes, (GIBMO)NAT3 (N‐acetyltransferase) and (GIBMO)NAT2 (unknown function). We present the crystallographic structure of (GIBMO)NAT1, also modelling other fungal NAT homologues. Monomeric (GIBMO)NAT1 is distinctive, with access to the catalytic core through two “tunnel‐like” entries separated by a “bridge‐like” helix. In the quaternary arrangement, (GIBMO)NAT1 monomers interact in pairs along an extensive interface whereby one entry of each monomer is covered by the N‐terminus of the other monomer. Although monomeric (GIBMO)NAT1 apparently accommodates acetyl‐CoA better than malonyl‐CoA, dimerization changes the active site to allow malonyl‐CoA to reach the catalytic triad (Cys110, His158 and Asp173) via the single uncovered entry, and anchor its terminal carboxyl‐group via hydrogen bonds to Arg109, Asn157 and Thr261. Lacking a terminal carboxyl‐group, acetyl‐CoA cannot form such stabilizing interactions, while longer acyl‐CoAs enter the active site but cannot reach catalytic Cys. Other NAT isoenzymes lack such structural features, with (GIBMO)NAT3 resembling bacterial NATs and (GIBMO)NAT2 adopting a structure intermediate between (GIBMO)NAT1 and (GIBMO)NAT3. Biochemical assays confirmed differential donor substrate preference of (GIBMO)NAT isoenzymes, with phylogenetic analysis demonstrating evolutionary separation. Given the role of (GIBMO)NAT1 in enhancing Fusarium pathogenicity, unravelling the structure and function of this enzyme may benefit research into more targeted strategies for pathogen control.
Fusarium endophytes damage cereal crops and contaminate produce with mycotoxins. Those fungi overcome the chemical defence of host via a malonyl‐CoA dependent enzyme homologous to xenobiotic metabolizing arylamine N‐acetyltransferase. Crystallography demonstrates that this N‐malonyltransferase has evolved to selectively employ malonyl‐CoA, versus acetyl‐CoA, via a remarkable adaptation of its functional unit and catalytic mechanism, involving protein dimerization and interaction of specific active site residues with the terminal carboxyl‐group of malonate.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>36178468</pmid><doi>10.1111/febs.16642</doi><tpages>2436</tpages><orcidid>https://orcid.org/0000-0001-9280-9437</orcidid><orcidid>https://orcid.org/0000-0003-1613-3943</orcidid><orcidid>https://orcid.org/0000-0002-3162-5375</orcidid><orcidid>https://orcid.org/0000-0002-4627-8185</orcidid><orcidid>https://orcid.org/0000-0002-1757-0208</orcidid><orcidid>https://orcid.org/0000-0003-4978-5059</orcidid><orcidid>https://orcid.org/0000-0001-8329-1306</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2023-05, Vol.290 (9), p.2412-2436 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_journals_2808522411 |
source | MEDLINE; Wiley Free Content; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry |
subjects | Acetyl Coenzyme A Acetyltransferase Acetyltransferases Amines Arylamine N-Acetyltransferase - chemistry Arylamine N-Acetyltransferase - genetics Cereal crops Chemical defense Crop damage Crystal structure Crystallography Detoxification Dimerization Endophytes Enzymes FDB2 Fungi Fusarium Fusarium - genetics Fusarium verticillioides Homology Hydrogen bonding Hydrogen bonds Isoenzymes Isoenzymes - genetics malonyltransferase Monomers Mycotoxins NAT Organic compounds Pathogenicity Pathogens Perfect state Phylogeny Structure-function relationships Substrate preferences Substrates |
title | Fusarium verticillioides NAT1 (FDB2) N‐malonyltransferase is structurally, functionally and phylogenetically distinct from its N‐acetyltransferase (NAT) homologues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusarium%20verticillioides%20NAT1%20(FDB2)%20N%E2%80%90malonyltransferase%20is%20structurally,%20functionally%20and%20phylogenetically%20distinct%20from%20its%20N%E2%80%90acetyltransferase%20(NAT)%20homologues&rft.jtitle=The%20FEBS%20journal&rft.au=Karagianni,%20Eleni%E2%80%90Pavlina&rft.date=2023-05&rft.volume=290&rft.issue=9&rft.spage=2412&rft.epage=2436&rft.pages=2412-2436&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.16642&rft_dat=%3Cproquest_cross%3E2808522411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808522411&rft_id=info:pmid/36178468&rfr_iscdi=true |