Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting
Three-dimensional (3D) bioprinting is evolving into a promising technology by spatially controlling the distribution of living cells for the biomedical field. However, maintaining high printability while protecting cells from damage due to shear stress remains the key challenge for extrusion-based 3...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2023-05, Vol.11 (17), p.397-3918 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3918 |
---|---|
container_issue | 17 |
container_start_page | 397 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 11 |
creator | Cui, Rongwei Li, Sumei Li, Taiyi Gou, Xue Jing, Tao Zhang, Guowei Wei, Guihua Jin, Zhongmin Xiong, Xiong Qu, Shuxin |
description | Three-dimensional (3D) bioprinting is evolving into a promising technology by spatially controlling the distribution of living cells for the biomedical field. However, maintaining high printability while protecting cells from damage due to shear stress remains the key challenge for extrusion-based 3D bioprinting. Herein, we developed a novel "protein-polyphenol-polysaccharide" extrusion-based bioink named Gel-TA-Alg@Ca
2+
using gelatin (Gel), tannic acid (TA) and sodium alginate (Alg) with quantitative thixotropy by pre-crosslinking with a series of low concentrations of CaCl
2
at 0.03, 0.04, 0.05 and 0.06 M, respectively. Our experimental design quantitatively presented the positive proportional functional relationship between the thixotropy of Gel-TA-Alg@Ca
2+
and printability (including injectability and formability) for the first time. Importantly, the thixotropy proportionately and significantly elevated cellular viability after 3D bioprinting due to the reduced extrusion force involved in printing. 3D bioprinted constructs composed of Gel-TA-Alg@Ca
2+
and MG-63 cells exhibited a good cell viability rate for more than 14 days. These findings provide valuable insights into the rational design of thixotropic bioink and offer more opportunities to probe the relationship between the thixotropy and the success of 3D bioprinting.
Thixotropy-by-design bioink benefits enhancing printability and cell viability in 3D bioprinting. |
doi_str_mv | 10.1039/d2tb02786k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2808486534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808486534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-98fd3b063e035bdfa758d594b728de37005db140bf7939c03bdabcd6e9228a443</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2qFSDgwr2VpV6qSguOHcfOsYXyoaL2QqXeIjuesIbEXmxn21z5y3FYupWYy4z0fnp6o4fQUUGOC8LqE0OTJlTI6v4N2qOEk4XghXy7vcnvXXQY4x3JI4tKsnIH7TJBuKg430OPP1Qag-rxyvfTAAEbCHYNBi8nE_wt9Fhbb909_mPTEoNbKtdmNS3tX5-CX03YDqvg1xDxKliXlLa9TRNWzuAW-n7sVcgKRAhrlax32DrMzmbXZ9662wP0rlN9hMOXvY9-nX-7Ob1cXP-8uDr9cr1oGRNpUcvOME0qBoRxbToluDS8LrWg0kD-iHCji5LoTtSsbgnTRunWVFBTKlVZsn30aeOb8z6MEFMz2DhnVA78GBsqSVELUdEZ_fgKvfNjcDndTMlSVpzN1OcN1QYfY4CuyS8NKkxNQZq5nOaM3nx9Lud7hj-8WI56ALNF_1WRgfcbIMR2q_5vlz0BQbqWaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808486534</pqid></control><display><type>article</type><title>Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Cui, Rongwei ; Li, Sumei ; Li, Taiyi ; Gou, Xue ; Jing, Tao ; Zhang, Guowei ; Wei, Guihua ; Jin, Zhongmin ; Xiong, Xiong ; Qu, Shuxin</creator><creatorcontrib>Cui, Rongwei ; Li, Sumei ; Li, Taiyi ; Gou, Xue ; Jing, Tao ; Zhang, Guowei ; Wei, Guihua ; Jin, Zhongmin ; Xiong, Xiong ; Qu, Shuxin</creatorcontrib><description>Three-dimensional (3D) bioprinting is evolving into a promising technology by spatially controlling the distribution of living cells for the biomedical field. However, maintaining high printability while protecting cells from damage due to shear stress remains the key challenge for extrusion-based 3D bioprinting. Herein, we developed a novel "protein-polyphenol-polysaccharide" extrusion-based bioink named Gel-TA-Alg@Ca
2+
using gelatin (Gel), tannic acid (TA) and sodium alginate (Alg) with quantitative thixotropy by pre-crosslinking with a series of low concentrations of CaCl
2
at 0.03, 0.04, 0.05 and 0.06 M, respectively. Our experimental design quantitatively presented the positive proportional functional relationship between the thixotropy of Gel-TA-Alg@Ca
2+
and printability (including injectability and formability) for the first time. Importantly, the thixotropy proportionately and significantly elevated cellular viability after 3D bioprinting due to the reduced extrusion force involved in printing. 3D bioprinted constructs composed of Gel-TA-Alg@Ca
2+
and MG-63 cells exhibited a good cell viability rate for more than 14 days. These findings provide valuable insights into the rational design of thixotropic bioink and offer more opportunities to probe the relationship between the thixotropy and the success of 3D bioprinting.
Thixotropy-by-design bioink benefits enhancing printability and cell viability in 3D bioprinting.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d2tb02786k</identifier><identifier>PMID: 37057655</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>3-D printers ; Alginic acid ; Bioprinting - methods ; Calcium chloride ; Calcium ions ; Cell Survival ; Cell viability ; Crosslinking ; Design of experiments ; Experimental design ; Extrusion ; Gelatin ; Hydrogels ; Hydrogels - pharmacology ; Low concentrations ; Mechanical Phenomena ; Mesenchymal Stem Cells ; Natural polymers ; Polymers ; Polysaccharides ; Shear stress ; Sodium alginate ; Tannic acid ; Thixotropy ; Three dimensional printing</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2023-05, Vol.11 (17), p.397-3918</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-98fd3b063e035bdfa758d594b728de37005db140bf7939c03bdabcd6e9228a443</citedby><cites>FETCH-LOGICAL-c337t-98fd3b063e035bdfa758d594b728de37005db140bf7939c03bdabcd6e9228a443</cites><orcidid>0000-0001-9049-9332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37057655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Rongwei</creatorcontrib><creatorcontrib>Li, Sumei</creatorcontrib><creatorcontrib>Li, Taiyi</creatorcontrib><creatorcontrib>Gou, Xue</creatorcontrib><creatorcontrib>Jing, Tao</creatorcontrib><creatorcontrib>Zhang, Guowei</creatorcontrib><creatorcontrib>Wei, Guihua</creatorcontrib><creatorcontrib>Jin, Zhongmin</creatorcontrib><creatorcontrib>Xiong, Xiong</creatorcontrib><creatorcontrib>Qu, Shuxin</creatorcontrib><title>Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Three-dimensional (3D) bioprinting is evolving into a promising technology by spatially controlling the distribution of living cells for the biomedical field. However, maintaining high printability while protecting cells from damage due to shear stress remains the key challenge for extrusion-based 3D bioprinting. Herein, we developed a novel "protein-polyphenol-polysaccharide" extrusion-based bioink named Gel-TA-Alg@Ca
2+
using gelatin (Gel), tannic acid (TA) and sodium alginate (Alg) with quantitative thixotropy by pre-crosslinking with a series of low concentrations of CaCl
2
at 0.03, 0.04, 0.05 and 0.06 M, respectively. Our experimental design quantitatively presented the positive proportional functional relationship between the thixotropy of Gel-TA-Alg@Ca
2+
and printability (including injectability and formability) for the first time. Importantly, the thixotropy proportionately and significantly elevated cellular viability after 3D bioprinting due to the reduced extrusion force involved in printing. 3D bioprinted constructs composed of Gel-TA-Alg@Ca
2+
and MG-63 cells exhibited a good cell viability rate for more than 14 days. These findings provide valuable insights into the rational design of thixotropic bioink and offer more opportunities to probe the relationship between the thixotropy and the success of 3D bioprinting.
Thixotropy-by-design bioink benefits enhancing printability and cell viability in 3D bioprinting.</description><subject>3-D printers</subject><subject>Alginic acid</subject><subject>Bioprinting - methods</subject><subject>Calcium chloride</subject><subject>Calcium ions</subject><subject>Cell Survival</subject><subject>Cell viability</subject><subject>Crosslinking</subject><subject>Design of experiments</subject><subject>Experimental design</subject><subject>Extrusion</subject><subject>Gelatin</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>Low concentrations</subject><subject>Mechanical Phenomena</subject><subject>Mesenchymal Stem Cells</subject><subject>Natural polymers</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Shear stress</subject><subject>Sodium alginate</subject><subject>Tannic acid</subject><subject>Thixotropy</subject><subject>Three dimensional printing</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxa2qFSDgwr2VpV6qSguOHcfOsYXyoaL2QqXeIjuesIbEXmxn21z5y3FYupWYy4z0fnp6o4fQUUGOC8LqE0OTJlTI6v4N2qOEk4XghXy7vcnvXXQY4x3JI4tKsnIH7TJBuKg430OPP1Qag-rxyvfTAAEbCHYNBi8nE_wt9Fhbb909_mPTEoNbKtdmNS3tX5-CX03YDqvg1xDxKliXlLa9TRNWzuAW-n7sVcgKRAhrlax32DrMzmbXZ9662wP0rlN9hMOXvY9-nX-7Ob1cXP-8uDr9cr1oGRNpUcvOME0qBoRxbToluDS8LrWg0kD-iHCji5LoTtSsbgnTRunWVFBTKlVZsn30aeOb8z6MEFMz2DhnVA78GBsqSVELUdEZ_fgKvfNjcDndTMlSVpzN1OcN1QYfY4CuyS8NKkxNQZq5nOaM3nx9Lud7hj-8WI56ALNF_1WRgfcbIMR2q_5vlz0BQbqWaQ</recordid><startdate>20230503</startdate><enddate>20230503</enddate><creator>Cui, Rongwei</creator><creator>Li, Sumei</creator><creator>Li, Taiyi</creator><creator>Gou, Xue</creator><creator>Jing, Tao</creator><creator>Zhang, Guowei</creator><creator>Wei, Guihua</creator><creator>Jin, Zhongmin</creator><creator>Xiong, Xiong</creator><creator>Qu, Shuxin</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9049-9332</orcidid></search><sort><creationdate>20230503</creationdate><title>Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting</title><author>Cui, Rongwei ; Li, Sumei ; Li, Taiyi ; Gou, Xue ; Jing, Tao ; Zhang, Guowei ; Wei, Guihua ; Jin, Zhongmin ; Xiong, Xiong ; Qu, Shuxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-98fd3b063e035bdfa758d594b728de37005db140bf7939c03bdabcd6e9228a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Alginic acid</topic><topic>Bioprinting - methods</topic><topic>Calcium chloride</topic><topic>Calcium ions</topic><topic>Cell Survival</topic><topic>Cell viability</topic><topic>Crosslinking</topic><topic>Design of experiments</topic><topic>Experimental design</topic><topic>Extrusion</topic><topic>Gelatin</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>Low concentrations</topic><topic>Mechanical Phenomena</topic><topic>Mesenchymal Stem Cells</topic><topic>Natural polymers</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Shear stress</topic><topic>Sodium alginate</topic><topic>Tannic acid</topic><topic>Thixotropy</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Rongwei</creatorcontrib><creatorcontrib>Li, Sumei</creatorcontrib><creatorcontrib>Li, Taiyi</creatorcontrib><creatorcontrib>Gou, Xue</creatorcontrib><creatorcontrib>Jing, Tao</creatorcontrib><creatorcontrib>Zhang, Guowei</creatorcontrib><creatorcontrib>Wei, Guihua</creatorcontrib><creatorcontrib>Jin, Zhongmin</creatorcontrib><creatorcontrib>Xiong, Xiong</creatorcontrib><creatorcontrib>Qu, Shuxin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Rongwei</au><au>Li, Sumei</au><au>Li, Taiyi</au><au>Gou, Xue</au><au>Jing, Tao</au><au>Zhang, Guowei</au><au>Wei, Guihua</au><au>Jin, Zhongmin</au><au>Xiong, Xiong</au><au>Qu, Shuxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2023-05-03</date><risdate>2023</risdate><volume>11</volume><issue>17</issue><spage>397</spage><epage>3918</epage><pages>397-3918</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Three-dimensional (3D) bioprinting is evolving into a promising technology by spatially controlling the distribution of living cells for the biomedical field. However, maintaining high printability while protecting cells from damage due to shear stress remains the key challenge for extrusion-based 3D bioprinting. Herein, we developed a novel "protein-polyphenol-polysaccharide" extrusion-based bioink named Gel-TA-Alg@Ca
2+
using gelatin (Gel), tannic acid (TA) and sodium alginate (Alg) with quantitative thixotropy by pre-crosslinking with a series of low concentrations of CaCl
2
at 0.03, 0.04, 0.05 and 0.06 M, respectively. Our experimental design quantitatively presented the positive proportional functional relationship between the thixotropy of Gel-TA-Alg@Ca
2+
and printability (including injectability and formability) for the first time. Importantly, the thixotropy proportionately and significantly elevated cellular viability after 3D bioprinting due to the reduced extrusion force involved in printing. 3D bioprinted constructs composed of Gel-TA-Alg@Ca
2+
and MG-63 cells exhibited a good cell viability rate for more than 14 days. These findings provide valuable insights into the rational design of thixotropic bioink and offer more opportunities to probe the relationship between the thixotropy and the success of 3D bioprinting.
Thixotropy-by-design bioink benefits enhancing printability and cell viability in 3D bioprinting.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37057655</pmid><doi>10.1039/d2tb02786k</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9049-9332</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2023-05, Vol.11 (17), p.397-3918 |
issn | 2050-750X 2050-7518 |
language | eng |
recordid | cdi_proquest_journals_2808486534 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | 3-D printers Alginic acid Bioprinting - methods Calcium chloride Calcium ions Cell Survival Cell viability Crosslinking Design of experiments Experimental design Extrusion Gelatin Hydrogels Hydrogels - pharmacology Low concentrations Mechanical Phenomena Mesenchymal Stem Cells Natural polymers Polymers Polysaccharides Shear stress Sodium alginate Tannic acid Thixotropy Three dimensional printing |
title | Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20polymer%20derived%20hydrogel%20bioink%20with%20enhanced%20thixotropy%20improves%20printability%20and%20cellular%20preservation%20in%203D%20bioprinting&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Cui,%20Rongwei&rft.date=2023-05-03&rft.volume=11&rft.issue=17&rft.spage=397&rft.epage=3918&rft.pages=397-3918&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d2tb02786k&rft_dat=%3Cproquest_cross%3E2808486534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808486534&rft_id=info:pmid/37057655&rfr_iscdi=true |