Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting

Three-dimensional (3D) bioprinting is evolving into a promising technology by spatially controlling the distribution of living cells for the biomedical field. However, maintaining high printability while protecting cells from damage due to shear stress remains the key challenge for extrusion-based 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2023-05, Vol.11 (17), p.397-3918
Hauptverfasser: Cui, Rongwei, Li, Sumei, Li, Taiyi, Gou, Xue, Jing, Tao, Zhang, Guowei, Wei, Guihua, Jin, Zhongmin, Xiong, Xiong, Qu, Shuxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3918
container_issue 17
container_start_page 397
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 11
creator Cui, Rongwei
Li, Sumei
Li, Taiyi
Gou, Xue
Jing, Tao
Zhang, Guowei
Wei, Guihua
Jin, Zhongmin
Xiong, Xiong
Qu, Shuxin
description Three-dimensional (3D) bioprinting is evolving into a promising technology by spatially controlling the distribution of living cells for the biomedical field. However, maintaining high printability while protecting cells from damage due to shear stress remains the key challenge for extrusion-based 3D bioprinting. Herein, we developed a novel "protein-polyphenol-polysaccharide" extrusion-based bioink named Gel-TA-Alg@Ca 2+ using gelatin (Gel), tannic acid (TA) and sodium alginate (Alg) with quantitative thixotropy by pre-crosslinking with a series of low concentrations of CaCl 2 at 0.03, 0.04, 0.05 and 0.06 M, respectively. Our experimental design quantitatively presented the positive proportional functional relationship between the thixotropy of Gel-TA-Alg@Ca 2+ and printability (including injectability and formability) for the first time. Importantly, the thixotropy proportionately and significantly elevated cellular viability after 3D bioprinting due to the reduced extrusion force involved in printing. 3D bioprinted constructs composed of Gel-TA-Alg@Ca 2+ and MG-63 cells exhibited a good cell viability rate for more than 14 days. These findings provide valuable insights into the rational design of thixotropic bioink and offer more opportunities to probe the relationship between the thixotropy and the success of 3D bioprinting. Thixotropy-by-design bioink benefits enhancing printability and cell viability in 3D bioprinting.
doi_str_mv 10.1039/d2tb02786k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2808486534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808486534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-98fd3b063e035bdfa758d594b728de37005db140bf7939c03bdabcd6e9228a443</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2qFSDgwr2VpV6qSguOHcfOsYXyoaL2QqXeIjuesIbEXmxn21z5y3FYupWYy4z0fnp6o4fQUUGOC8LqE0OTJlTI6v4N2qOEk4XghXy7vcnvXXQY4x3JI4tKsnIH7TJBuKg430OPP1Qag-rxyvfTAAEbCHYNBi8nE_wt9Fhbb909_mPTEoNbKtdmNS3tX5-CX03YDqvg1xDxKliXlLa9TRNWzuAW-n7sVcgKRAhrlax32DrMzmbXZ9662wP0rlN9hMOXvY9-nX-7Ob1cXP-8uDr9cr1oGRNpUcvOME0qBoRxbToluDS8LrWg0kD-iHCji5LoTtSsbgnTRunWVFBTKlVZsn30aeOb8z6MEFMz2DhnVA78GBsqSVELUdEZ_fgKvfNjcDndTMlSVpzN1OcN1QYfY4CuyS8NKkxNQZq5nOaM3nx9Lud7hj-8WI56ALNF_1WRgfcbIMR2q_5vlz0BQbqWaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808486534</pqid></control><display><type>article</type><title>Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Cui, Rongwei ; Li, Sumei ; Li, Taiyi ; Gou, Xue ; Jing, Tao ; Zhang, Guowei ; Wei, Guihua ; Jin, Zhongmin ; Xiong, Xiong ; Qu, Shuxin</creator><creatorcontrib>Cui, Rongwei ; Li, Sumei ; Li, Taiyi ; Gou, Xue ; Jing, Tao ; Zhang, Guowei ; Wei, Guihua ; Jin, Zhongmin ; Xiong, Xiong ; Qu, Shuxin</creatorcontrib><description>Three-dimensional (3D) bioprinting is evolving into a promising technology by spatially controlling the distribution of living cells for the biomedical field. However, maintaining high printability while protecting cells from damage due to shear stress remains the key challenge for extrusion-based 3D bioprinting. Herein, we developed a novel "protein-polyphenol-polysaccharide" extrusion-based bioink named Gel-TA-Alg@Ca 2+ using gelatin (Gel), tannic acid (TA) and sodium alginate (Alg) with quantitative thixotropy by pre-crosslinking with a series of low concentrations of CaCl 2 at 0.03, 0.04, 0.05 and 0.06 M, respectively. Our experimental design quantitatively presented the positive proportional functional relationship between the thixotropy of Gel-TA-Alg@Ca 2+ and printability (including injectability and formability) for the first time. Importantly, the thixotropy proportionately and significantly elevated cellular viability after 3D bioprinting due to the reduced extrusion force involved in printing. 3D bioprinted constructs composed of Gel-TA-Alg@Ca 2+ and MG-63 cells exhibited a good cell viability rate for more than 14 days. These findings provide valuable insights into the rational design of thixotropic bioink and offer more opportunities to probe the relationship between the thixotropy and the success of 3D bioprinting. Thixotropy-by-design bioink benefits enhancing printability and cell viability in 3D bioprinting.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d2tb02786k</identifier><identifier>PMID: 37057655</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>3-D printers ; Alginic acid ; Bioprinting - methods ; Calcium chloride ; Calcium ions ; Cell Survival ; Cell viability ; Crosslinking ; Design of experiments ; Experimental design ; Extrusion ; Gelatin ; Hydrogels ; Hydrogels - pharmacology ; Low concentrations ; Mechanical Phenomena ; Mesenchymal Stem Cells ; Natural polymers ; Polymers ; Polysaccharides ; Shear stress ; Sodium alginate ; Tannic acid ; Thixotropy ; Three dimensional printing</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2023-05, Vol.11 (17), p.397-3918</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-98fd3b063e035bdfa758d594b728de37005db140bf7939c03bdabcd6e9228a443</citedby><cites>FETCH-LOGICAL-c337t-98fd3b063e035bdfa758d594b728de37005db140bf7939c03bdabcd6e9228a443</cites><orcidid>0000-0001-9049-9332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37057655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Rongwei</creatorcontrib><creatorcontrib>Li, Sumei</creatorcontrib><creatorcontrib>Li, Taiyi</creatorcontrib><creatorcontrib>Gou, Xue</creatorcontrib><creatorcontrib>Jing, Tao</creatorcontrib><creatorcontrib>Zhang, Guowei</creatorcontrib><creatorcontrib>Wei, Guihua</creatorcontrib><creatorcontrib>Jin, Zhongmin</creatorcontrib><creatorcontrib>Xiong, Xiong</creatorcontrib><creatorcontrib>Qu, Shuxin</creatorcontrib><title>Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Three-dimensional (3D) bioprinting is evolving into a promising technology by spatially controlling the distribution of living cells for the biomedical field. However, maintaining high printability while protecting cells from damage due to shear stress remains the key challenge for extrusion-based 3D bioprinting. Herein, we developed a novel "protein-polyphenol-polysaccharide" extrusion-based bioink named Gel-TA-Alg@Ca 2+ using gelatin (Gel), tannic acid (TA) and sodium alginate (Alg) with quantitative thixotropy by pre-crosslinking with a series of low concentrations of CaCl 2 at 0.03, 0.04, 0.05 and 0.06 M, respectively. Our experimental design quantitatively presented the positive proportional functional relationship between the thixotropy of Gel-TA-Alg@Ca 2+ and printability (including injectability and formability) for the first time. Importantly, the thixotropy proportionately and significantly elevated cellular viability after 3D bioprinting due to the reduced extrusion force involved in printing. 3D bioprinted constructs composed of Gel-TA-Alg@Ca 2+ and MG-63 cells exhibited a good cell viability rate for more than 14 days. These findings provide valuable insights into the rational design of thixotropic bioink and offer more opportunities to probe the relationship between the thixotropy and the success of 3D bioprinting. Thixotropy-by-design bioink benefits enhancing printability and cell viability in 3D bioprinting.</description><subject>3-D printers</subject><subject>Alginic acid</subject><subject>Bioprinting - methods</subject><subject>Calcium chloride</subject><subject>Calcium ions</subject><subject>Cell Survival</subject><subject>Cell viability</subject><subject>Crosslinking</subject><subject>Design of experiments</subject><subject>Experimental design</subject><subject>Extrusion</subject><subject>Gelatin</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>Low concentrations</subject><subject>Mechanical Phenomena</subject><subject>Mesenchymal Stem Cells</subject><subject>Natural polymers</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Shear stress</subject><subject>Sodium alginate</subject><subject>Tannic acid</subject><subject>Thixotropy</subject><subject>Three dimensional printing</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxa2qFSDgwr2VpV6qSguOHcfOsYXyoaL2QqXeIjuesIbEXmxn21z5y3FYupWYy4z0fnp6o4fQUUGOC8LqE0OTJlTI6v4N2qOEk4XghXy7vcnvXXQY4x3JI4tKsnIH7TJBuKg430OPP1Qag-rxyvfTAAEbCHYNBi8nE_wt9Fhbb909_mPTEoNbKtdmNS3tX5-CX03YDqvg1xDxKliXlLa9TRNWzuAW-n7sVcgKRAhrlax32DrMzmbXZ9662wP0rlN9hMOXvY9-nX-7Ob1cXP-8uDr9cr1oGRNpUcvOME0qBoRxbToluDS8LrWg0kD-iHCji5LoTtSsbgnTRunWVFBTKlVZsn30aeOb8z6MEFMz2DhnVA78GBsqSVELUdEZ_fgKvfNjcDndTMlSVpzN1OcN1QYfY4CuyS8NKkxNQZq5nOaM3nx9Lud7hj-8WI56ALNF_1WRgfcbIMR2q_5vlz0BQbqWaQ</recordid><startdate>20230503</startdate><enddate>20230503</enddate><creator>Cui, Rongwei</creator><creator>Li, Sumei</creator><creator>Li, Taiyi</creator><creator>Gou, Xue</creator><creator>Jing, Tao</creator><creator>Zhang, Guowei</creator><creator>Wei, Guihua</creator><creator>Jin, Zhongmin</creator><creator>Xiong, Xiong</creator><creator>Qu, Shuxin</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9049-9332</orcidid></search><sort><creationdate>20230503</creationdate><title>Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting</title><author>Cui, Rongwei ; Li, Sumei ; Li, Taiyi ; Gou, Xue ; Jing, Tao ; Zhang, Guowei ; Wei, Guihua ; Jin, Zhongmin ; Xiong, Xiong ; Qu, Shuxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-98fd3b063e035bdfa758d594b728de37005db140bf7939c03bdabcd6e9228a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Alginic acid</topic><topic>Bioprinting - methods</topic><topic>Calcium chloride</topic><topic>Calcium ions</topic><topic>Cell Survival</topic><topic>Cell viability</topic><topic>Crosslinking</topic><topic>Design of experiments</topic><topic>Experimental design</topic><topic>Extrusion</topic><topic>Gelatin</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>Low concentrations</topic><topic>Mechanical Phenomena</topic><topic>Mesenchymal Stem Cells</topic><topic>Natural polymers</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Shear stress</topic><topic>Sodium alginate</topic><topic>Tannic acid</topic><topic>Thixotropy</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Rongwei</creatorcontrib><creatorcontrib>Li, Sumei</creatorcontrib><creatorcontrib>Li, Taiyi</creatorcontrib><creatorcontrib>Gou, Xue</creatorcontrib><creatorcontrib>Jing, Tao</creatorcontrib><creatorcontrib>Zhang, Guowei</creatorcontrib><creatorcontrib>Wei, Guihua</creatorcontrib><creatorcontrib>Jin, Zhongmin</creatorcontrib><creatorcontrib>Xiong, Xiong</creatorcontrib><creatorcontrib>Qu, Shuxin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Rongwei</au><au>Li, Sumei</au><au>Li, Taiyi</au><au>Gou, Xue</au><au>Jing, Tao</au><au>Zhang, Guowei</au><au>Wei, Guihua</au><au>Jin, Zhongmin</au><au>Xiong, Xiong</au><au>Qu, Shuxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2023-05-03</date><risdate>2023</risdate><volume>11</volume><issue>17</issue><spage>397</spage><epage>3918</epage><pages>397-3918</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Three-dimensional (3D) bioprinting is evolving into a promising technology by spatially controlling the distribution of living cells for the biomedical field. However, maintaining high printability while protecting cells from damage due to shear stress remains the key challenge for extrusion-based 3D bioprinting. Herein, we developed a novel "protein-polyphenol-polysaccharide" extrusion-based bioink named Gel-TA-Alg@Ca 2+ using gelatin (Gel), tannic acid (TA) and sodium alginate (Alg) with quantitative thixotropy by pre-crosslinking with a series of low concentrations of CaCl 2 at 0.03, 0.04, 0.05 and 0.06 M, respectively. Our experimental design quantitatively presented the positive proportional functional relationship between the thixotropy of Gel-TA-Alg@Ca 2+ and printability (including injectability and formability) for the first time. Importantly, the thixotropy proportionately and significantly elevated cellular viability after 3D bioprinting due to the reduced extrusion force involved in printing. 3D bioprinted constructs composed of Gel-TA-Alg@Ca 2+ and MG-63 cells exhibited a good cell viability rate for more than 14 days. These findings provide valuable insights into the rational design of thixotropic bioink and offer more opportunities to probe the relationship between the thixotropy and the success of 3D bioprinting. Thixotropy-by-design bioink benefits enhancing printability and cell viability in 3D bioprinting.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37057655</pmid><doi>10.1039/d2tb02786k</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9049-9332</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2023-05, Vol.11 (17), p.397-3918
issn 2050-750X
2050-7518
language eng
recordid cdi_proquest_journals_2808486534
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects 3-D printers
Alginic acid
Bioprinting - methods
Calcium chloride
Calcium ions
Cell Survival
Cell viability
Crosslinking
Design of experiments
Experimental design
Extrusion
Gelatin
Hydrogels
Hydrogels - pharmacology
Low concentrations
Mechanical Phenomena
Mesenchymal Stem Cells
Natural polymers
Polymers
Polysaccharides
Shear stress
Sodium alginate
Tannic acid
Thixotropy
Three dimensional printing
title Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20polymer%20derived%20hydrogel%20bioink%20with%20enhanced%20thixotropy%20improves%20printability%20and%20cellular%20preservation%20in%203D%20bioprinting&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Cui,%20Rongwei&rft.date=2023-05-03&rft.volume=11&rft.issue=17&rft.spage=397&rft.epage=3918&rft.pages=397-3918&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d2tb02786k&rft_dat=%3Cproquest_cross%3E2808486534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808486534&rft_id=info:pmid/37057655&rfr_iscdi=true