A Dynamic Mechanism Design for Controllable and Ergodic Markov Games

This paper suggests an analytical method for computing Bayesian incentive-compatible mechanisms where the private information is revealed following a class of controllable Markov games. We consider a dynamic environment where decision are taken after several finite periods. Our method incorporates a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics 2023-03, Vol.61 (3), p.1151-1171
1. Verfasser: Clempner, Julio B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1171
container_issue 3
container_start_page 1151
container_title Computational economics
container_volume 61
creator Clempner, Julio B.
description This paper suggests an analytical method for computing Bayesian incentive-compatible mechanisms where the private information is revealed following a class of controllable Markov games. We consider a dynamic environment where decision are taken after several finite periods. Our method incorporates a new variable that represents the product of the mechanism design, the strategies, and the distribution vector. We derive the relations to analytically compute the variables of interest. The introduction of this variable makes the problem computationally tractable. The method involves a Reinforcement Learning approach which computes the near-optimal mechanism in equilibrium with the resulting strategy of the game with high profit maximization. We use the standard notion of Bayesian–Nash equilibrium as the equilibrium concept for our game. An interesting challenge is that for the objective of profit maximization there is no single optimal mechanism because there are multiple equilibria. We use Tikhonov’s method to provide a regularization parameter to solve this problem. We demonstrate the game’s equilibrium and convergence to a single incentive-compatible mechanism. This generates novel and considerably better findings for many game theory problem areas, as well as incentive-compatible mechanisms that match the game’s equilibrium. We present a numerical example in the realm of a dynamic public finance model with partial information to demonstrate the suggested technique.
doi_str_mv 10.1007/s10614-022-10240-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2808429198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747895873</galeid><sourcerecordid>A747895873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-f9f56bd5179b932353445916cba01cd0a4a8b4e385e36fbfded1f4d6f3d5286f3</originalsourceid><addsrcrecordid>eNp9kEFPwyAYhonRxDn9A55IPHcChQLHZZvTZMaLngktMDtbmLCZ9N_LrIk3w-FL4Hle4AXgFqMZRojfJ4wqTAtESIERoagYzsAEM04KKTk9BxMkCS84kvISXKW0QwgxTMgELOdwOXjdtw18ts279m3q4dKmduuhCxEugj_E0HW67izU3sBV3AZzonX8CF9wrXubrsGF012yN79zCt4eVq-Lx2Lzsn5azDdFQ6k4FE46VtWGYS5rWZKSlZQyiaum1gg3BmmqRU1tKZgtK1c7Yw121FSuNIyIPKbgbszdx_B5tOmgduEYfb5SEYEEJRJLkanZSG11Z1XrXThE3eRlbP5m8Na1eX_OKReSCV5mgYxCE0NK0Tq1j22v46AwUqd61VivyvWqn3rVkCU4SjZHtulPEZTyDFOakXJEUj70Wxv_nvtP8DfuzYa0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808429198</pqid></control><display><type>article</type><title>A Dynamic Mechanism Design for Controllable and Ergodic Markov Games</title><source>SpringerLink Journals - AutoHoldings</source><creator>Clempner, Julio B.</creator><creatorcontrib>Clempner, Julio B.</creatorcontrib><description>This paper suggests an analytical method for computing Bayesian incentive-compatible mechanisms where the private information is revealed following a class of controllable Markov games. We consider a dynamic environment where decision are taken after several finite periods. Our method incorporates a new variable that represents the product of the mechanism design, the strategies, and the distribution vector. We derive the relations to analytically compute the variables of interest. The introduction of this variable makes the problem computationally tractable. The method involves a Reinforcement Learning approach which computes the near-optimal mechanism in equilibrium with the resulting strategy of the game with high profit maximization. We use the standard notion of Bayesian–Nash equilibrium as the equilibrium concept for our game. An interesting challenge is that for the objective of profit maximization there is no single optimal mechanism because there are multiple equilibria. We use Tikhonov’s method to provide a regularization parameter to solve this problem. We demonstrate the game’s equilibrium and convergence to a single incentive-compatible mechanism. This generates novel and considerably better findings for many game theory problem areas, as well as incentive-compatible mechanisms that match the game’s equilibrium. We present a numerical example in the realm of a dynamic public finance model with partial information to demonstrate the suggested technique.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-022-10240-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bayesian analysis ; Behavioral/Experimental Economics ; Cognitive style ; Compatibility ; Computer Appl. in Social and Behavioral Sciences ; Controllability ; Convergence ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Equilibrium ; Game theory ; Games ; Math Applications in Computer Science ; Maximization ; Operations Research/Decision Theory ; Optimization ; Partial information ; Profit maximization ; Public finance ; Regularization ; Reinforcement</subject><ispartof>Computational economics, 2023-03, Vol.61 (3), p.1151-1171</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-f9f56bd5179b932353445916cba01cd0a4a8b4e385e36fbfded1f4d6f3d5286f3</citedby><cites>FETCH-LOGICAL-c448t-f9f56bd5179b932353445916cba01cd0a4a8b4e385e36fbfded1f4d6f3d5286f3</cites><orcidid>0000-0002-5918-4671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-022-10240-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-022-10240-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Clempner, Julio B.</creatorcontrib><title>A Dynamic Mechanism Design for Controllable and Ergodic Markov Games</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>This paper suggests an analytical method for computing Bayesian incentive-compatible mechanisms where the private information is revealed following a class of controllable Markov games. We consider a dynamic environment where decision are taken after several finite periods. Our method incorporates a new variable that represents the product of the mechanism design, the strategies, and the distribution vector. We derive the relations to analytically compute the variables of interest. The introduction of this variable makes the problem computationally tractable. The method involves a Reinforcement Learning approach which computes the near-optimal mechanism in equilibrium with the resulting strategy of the game with high profit maximization. We use the standard notion of Bayesian–Nash equilibrium as the equilibrium concept for our game. An interesting challenge is that for the objective of profit maximization there is no single optimal mechanism because there are multiple equilibria. We use Tikhonov’s method to provide a regularization parameter to solve this problem. We demonstrate the game’s equilibrium and convergence to a single incentive-compatible mechanism. This generates novel and considerably better findings for many game theory problem areas, as well as incentive-compatible mechanisms that match the game’s equilibrium. We present a numerical example in the realm of a dynamic public finance model with partial information to demonstrate the suggested technique.</description><subject>Bayesian analysis</subject><subject>Behavioral/Experimental Economics</subject><subject>Cognitive style</subject><subject>Compatibility</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Controllability</subject><subject>Convergence</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Games</subject><subject>Math Applications in Computer Science</subject><subject>Maximization</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Partial information</subject><subject>Profit maximization</subject><subject>Public finance</subject><subject>Regularization</subject><subject>Reinforcement</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFPwyAYhonRxDn9A55IPHcChQLHZZvTZMaLngktMDtbmLCZ9N_LrIk3w-FL4Hle4AXgFqMZRojfJ4wqTAtESIERoagYzsAEM04KKTk9BxMkCS84kvISXKW0QwgxTMgELOdwOXjdtw18ts279m3q4dKmduuhCxEugj_E0HW67izU3sBV3AZzonX8CF9wrXubrsGF012yN79zCt4eVq-Lx2Lzsn5azDdFQ6k4FE46VtWGYS5rWZKSlZQyiaum1gg3BmmqRU1tKZgtK1c7Yw121FSuNIyIPKbgbszdx_B5tOmgduEYfb5SEYEEJRJLkanZSG11Z1XrXThE3eRlbP5m8Na1eX_OKReSCV5mgYxCE0NK0Tq1j22v46AwUqd61VivyvWqn3rVkCU4SjZHtulPEZTyDFOakXJEUj70Wxv_nvtP8DfuzYa0</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Clempner, Julio B.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5918-4671</orcidid></search><sort><creationdate>20230301</creationdate><title>A Dynamic Mechanism Design for Controllable and Ergodic Markov Games</title><author>Clempner, Julio B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-f9f56bd5179b932353445916cba01cd0a4a8b4e385e36fbfded1f4d6f3d5286f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>Behavioral/Experimental Economics</topic><topic>Cognitive style</topic><topic>Compatibility</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Controllability</topic><topic>Convergence</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Games</topic><topic>Math Applications in Computer Science</topic><topic>Maximization</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Partial information</topic><topic>Profit maximization</topic><topic>Public finance</topic><topic>Regularization</topic><topic>Reinforcement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clempner, Julio B.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clempner, Julio B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dynamic Mechanism Design for Controllable and Ergodic Markov Games</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>61</volume><issue>3</issue><spage>1151</spage><epage>1171</epage><pages>1151-1171</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>This paper suggests an analytical method for computing Bayesian incentive-compatible mechanisms where the private information is revealed following a class of controllable Markov games. We consider a dynamic environment where decision are taken after several finite periods. Our method incorporates a new variable that represents the product of the mechanism design, the strategies, and the distribution vector. We derive the relations to analytically compute the variables of interest. The introduction of this variable makes the problem computationally tractable. The method involves a Reinforcement Learning approach which computes the near-optimal mechanism in equilibrium with the resulting strategy of the game with high profit maximization. We use the standard notion of Bayesian–Nash equilibrium as the equilibrium concept for our game. An interesting challenge is that for the objective of profit maximization there is no single optimal mechanism because there are multiple equilibria. We use Tikhonov’s method to provide a regularization parameter to solve this problem. We demonstrate the game’s equilibrium and convergence to a single incentive-compatible mechanism. This generates novel and considerably better findings for many game theory problem areas, as well as incentive-compatible mechanisms that match the game’s equilibrium. We present a numerical example in the realm of a dynamic public finance model with partial information to demonstrate the suggested technique.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-022-10240-y</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5918-4671</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7099
ispartof Computational economics, 2023-03, Vol.61 (3), p.1151-1171
issn 0927-7099
1572-9974
language eng
recordid cdi_proquest_journals_2808429198
source SpringerLink Journals - AutoHoldings
subjects Bayesian analysis
Behavioral/Experimental Economics
Cognitive style
Compatibility
Computer Appl. in Social and Behavioral Sciences
Controllability
Convergence
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Equilibrium
Game theory
Games
Math Applications in Computer Science
Maximization
Operations Research/Decision Theory
Optimization
Partial information
Profit maximization
Public finance
Regularization
Reinforcement
title A Dynamic Mechanism Design for Controllable and Ergodic Markov Games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dynamic%20Mechanism%20Design%20for%20Controllable%20and%20Ergodic%20Markov%20Games&rft.jtitle=Computational%20economics&rft.au=Clempner,%20Julio%20B.&rft.date=2023-03-01&rft.volume=61&rft.issue=3&rft.spage=1151&rft.epage=1171&rft.pages=1151-1171&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-022-10240-y&rft_dat=%3Cgale_proqu%3EA747895873%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808429198&rft_id=info:pmid/&rft_galeid=A747895873&rfr_iscdi=true