Leader-Following Consensus of Multi-order Fractional Multi-agent Systems

The current study investigates the leader-following consensus problem for fractional-order multi-agent systems with different fractional orders under a fixed undirected graph. A virtual leader with the desired path is assumed, while the agents are chosen as fractional-order integrators with various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of control, automation & electrical systems automation & electrical systems, 2023-06, Vol.34 (3), p.530-540
Hauptverfasser: Yahyapoor, Mehdi, Tabatabaei, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 540
container_issue 3
container_start_page 530
container_title Journal of control, automation & electrical systems
container_volume 34
creator Yahyapoor, Mehdi
Tabatabaei, Mohammad
description The current study investigates the leader-following consensus problem for fractional-order multi-agent systems with different fractional orders under a fixed undirected graph. A virtual leader with the desired path is assumed, while the agents are chosen as fractional-order integrators with various orders. It is proved that the leader-following consensus problem for this multi-agent system is equivalent to the stability analysis of a multi-order fractional system. At first, the Laplace transform is employed to verify the asymptotic stability of a particular case of multi-order fractional systems. It is shown that if the state matrix is negative definite and a certain inequality between the fractional orders is met, the mentioned system is asymptotically stable. This inequality can be easily checked without any need for complex calculations. Accordingly, it is demonstrated that if a certain inequality is met among the fractional orders of a multi-order multi-agent system, the leader-following consensus of the mentioned heterogeneous multi-agent system can be realized. Numerical examples demonstrate the accuracy of the established leader-following consensus protocol.
doi_str_mv 10.1007/s40313-022-00982-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2808311566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808311566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2324d69391ba1b75c70dfd126f618f052c42a3620b1bb766af0938c70d0fbf0f3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWGpfwNOC5-hM0s0mRylWhYoH9Ryyu0nZst3UzC7St3dri948zTB8_8_wMXaNcIsAxR3NQaLkIAQHMFpwecYmAk3OpTbm_HfXcMlmRBsAQI0C83zCnlbe1T7xZWzb-NV062wRO_IdDZTFkL0Mbd_wmEYkWyZX9U3sXHs6u7Xv-uxtT73f0hW7CK4lPzvNKftYPrwvnvjq9fF5cb_ilUTTcyHFvFZGGiwdlkVeFVCHGoUKCnWAXFRz4aQSUGJZFkq5AEbqAwWhDBDklN0ce3cpfg6eeruJQxqfIis0aImYKzVS4khVKRIlH-wuNVuX9hbBHqTZozQ7SrM_0qwcQ_IYohHu1j79Vf-T-gaWQG5F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808311566</pqid></control><display><type>article</type><title>Leader-Following Consensus of Multi-order Fractional Multi-agent Systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yahyapoor, Mehdi ; Tabatabaei, Mohammad</creator><creatorcontrib>Yahyapoor, Mehdi ; Tabatabaei, Mohammad</creatorcontrib><description>The current study investigates the leader-following consensus problem for fractional-order multi-agent systems with different fractional orders under a fixed undirected graph. A virtual leader with the desired path is assumed, while the agents are chosen as fractional-order integrators with various orders. It is proved that the leader-following consensus problem for this multi-agent system is equivalent to the stability analysis of a multi-order fractional system. At first, the Laplace transform is employed to verify the asymptotic stability of a particular case of multi-order fractional systems. It is shown that if the state matrix is negative definite and a certain inequality between the fractional orders is met, the mentioned system is asymptotically stable. This inequality can be easily checked without any need for complex calculations. Accordingly, it is demonstrated that if a certain inequality is met among the fractional orders of a multi-order multi-agent system, the leader-following consensus of the mentioned heterogeneous multi-agent system can be realized. Numerical examples demonstrate the accuracy of the established leader-following consensus protocol.</description><identifier>ISSN: 2195-3880</identifier><identifier>EISSN: 2195-3899</identifier><identifier>DOI: 10.1007/s40313-022-00982-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic properties ; Control ; Control and Systems Theory ; Electrical Engineering ; Engineering ; Inequality ; Laplace transforms ; Mathematical analysis ; Matrices (mathematics) ; Mechatronics ; Multiagent systems ; Robotics ; Robotics and Automation ; Stability analysis</subject><ispartof>Journal of control, automation &amp; electrical systems, 2023-06, Vol.34 (3), p.530-540</ispartof><rights>Brazilian Society for Automatics--SBA 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2324d69391ba1b75c70dfd126f618f052c42a3620b1bb766af0938c70d0fbf0f3</citedby><cites>FETCH-LOGICAL-c319t-2324d69391ba1b75c70dfd126f618f052c42a3620b1bb766af0938c70d0fbf0f3</cites><orcidid>0000-0003-4307-2314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40313-022-00982-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40313-022-00982-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Yahyapoor, Mehdi</creatorcontrib><creatorcontrib>Tabatabaei, Mohammad</creatorcontrib><title>Leader-Following Consensus of Multi-order Fractional Multi-agent Systems</title><title>Journal of control, automation &amp; electrical systems</title><addtitle>J Control Autom Electr Syst</addtitle><description>The current study investigates the leader-following consensus problem for fractional-order multi-agent systems with different fractional orders under a fixed undirected graph. A virtual leader with the desired path is assumed, while the agents are chosen as fractional-order integrators with various orders. It is proved that the leader-following consensus problem for this multi-agent system is equivalent to the stability analysis of a multi-order fractional system. At first, the Laplace transform is employed to verify the asymptotic stability of a particular case of multi-order fractional systems. It is shown that if the state matrix is negative definite and a certain inequality between the fractional orders is met, the mentioned system is asymptotically stable. This inequality can be easily checked without any need for complex calculations. Accordingly, it is demonstrated that if a certain inequality is met among the fractional orders of a multi-order multi-agent system, the leader-following consensus of the mentioned heterogeneous multi-agent system can be realized. Numerical examples demonstrate the accuracy of the established leader-following consensus protocol.</description><subject>Asymptotic properties</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Inequality</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Mechatronics</subject><subject>Multiagent systems</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Stability analysis</subject><issn>2195-3880</issn><issn>2195-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWGpfwNOC5-hM0s0mRylWhYoH9Ryyu0nZst3UzC7St3dri948zTB8_8_wMXaNcIsAxR3NQaLkIAQHMFpwecYmAk3OpTbm_HfXcMlmRBsAQI0C83zCnlbe1T7xZWzb-NV062wRO_IdDZTFkL0Mbd_wmEYkWyZX9U3sXHs6u7Xv-uxtT73f0hW7CK4lPzvNKftYPrwvnvjq9fF5cb_ilUTTcyHFvFZGGiwdlkVeFVCHGoUKCnWAXFRz4aQSUGJZFkq5AEbqAwWhDBDklN0ce3cpfg6eeruJQxqfIis0aImYKzVS4khVKRIlH-wuNVuX9hbBHqTZozQ7SrM_0qwcQ_IYohHu1j79Vf-T-gaWQG5F</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Yahyapoor, Mehdi</creator><creator>Tabatabaei, Mohammad</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4307-2314</orcidid></search><sort><creationdate>20230601</creationdate><title>Leader-Following Consensus of Multi-order Fractional Multi-agent Systems</title><author>Yahyapoor, Mehdi ; Tabatabaei, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2324d69391ba1b75c70dfd126f618f052c42a3620b1bb766af0938c70d0fbf0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Inequality</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Mechatronics</topic><topic>Multiagent systems</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yahyapoor, Mehdi</creatorcontrib><creatorcontrib>Tabatabaei, Mohammad</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of control, automation &amp; electrical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yahyapoor, Mehdi</au><au>Tabatabaei, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leader-Following Consensus of Multi-order Fractional Multi-agent Systems</atitle><jtitle>Journal of control, automation &amp; electrical systems</jtitle><stitle>J Control Autom Electr Syst</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>34</volume><issue>3</issue><spage>530</spage><epage>540</epage><pages>530-540</pages><issn>2195-3880</issn><eissn>2195-3899</eissn><abstract>The current study investigates the leader-following consensus problem for fractional-order multi-agent systems with different fractional orders under a fixed undirected graph. A virtual leader with the desired path is assumed, while the agents are chosen as fractional-order integrators with various orders. It is proved that the leader-following consensus problem for this multi-agent system is equivalent to the stability analysis of a multi-order fractional system. At first, the Laplace transform is employed to verify the asymptotic stability of a particular case of multi-order fractional systems. It is shown that if the state matrix is negative definite and a certain inequality between the fractional orders is met, the mentioned system is asymptotically stable. This inequality can be easily checked without any need for complex calculations. Accordingly, it is demonstrated that if a certain inequality is met among the fractional orders of a multi-order multi-agent system, the leader-following consensus of the mentioned heterogeneous multi-agent system can be realized. Numerical examples demonstrate the accuracy of the established leader-following consensus protocol.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40313-022-00982-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4307-2314</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-3880
ispartof Journal of control, automation & electrical systems, 2023-06, Vol.34 (3), p.530-540
issn 2195-3880
2195-3899
language eng
recordid cdi_proquest_journals_2808311566
source SpringerLink Journals - AutoHoldings
subjects Asymptotic properties
Control
Control and Systems Theory
Electrical Engineering
Engineering
Inequality
Laplace transforms
Mathematical analysis
Matrices (mathematics)
Mechatronics
Multiagent systems
Robotics
Robotics and Automation
Stability analysis
title Leader-Following Consensus of Multi-order Fractional Multi-agent Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leader-Following%20Consensus%20of%20Multi-order%20Fractional%20Multi-agent%20Systems&rft.jtitle=Journal%20of%20control,%20automation%20&%20electrical%20systems&rft.au=Yahyapoor,%20Mehdi&rft.date=2023-06-01&rft.volume=34&rft.issue=3&rft.spage=530&rft.epage=540&rft.pages=530-540&rft.issn=2195-3880&rft.eissn=2195-3899&rft_id=info:doi/10.1007/s40313-022-00982-3&rft_dat=%3Cproquest_cross%3E2808311566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808311566&rft_id=info:pmid/&rfr_iscdi=true