Leader-Following Consensus of Multi-order Fractional Multi-agent Systems
The current study investigates the leader-following consensus problem for fractional-order multi-agent systems with different fractional orders under a fixed undirected graph. A virtual leader with the desired path is assumed, while the agents are chosen as fractional-order integrators with various...
Gespeichert in:
Veröffentlicht in: | Journal of control, automation & electrical systems automation & electrical systems, 2023-06, Vol.34 (3), p.530-540 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 540 |
---|---|
container_issue | 3 |
container_start_page | 530 |
container_title | Journal of control, automation & electrical systems |
container_volume | 34 |
creator | Yahyapoor, Mehdi Tabatabaei, Mohammad |
description | The current study investigates the leader-following consensus problem for fractional-order multi-agent systems with different fractional orders under a fixed undirected graph. A virtual leader with the desired path is assumed, while the agents are chosen as fractional-order integrators with various orders. It is proved that the leader-following consensus problem for this multi-agent system is equivalent to the stability analysis of a multi-order fractional system. At first, the Laplace transform is employed to verify the asymptotic stability of a particular case of multi-order fractional systems. It is shown that if the state matrix is negative definite and a certain inequality between the fractional orders is met, the mentioned system is asymptotically stable. This inequality can be easily checked without any need for complex calculations. Accordingly, it is demonstrated that if a certain inequality is met among the fractional orders of a multi-order multi-agent system, the leader-following consensus of the mentioned heterogeneous multi-agent system can be realized. Numerical examples demonstrate the accuracy of the established leader-following consensus protocol. |
doi_str_mv | 10.1007/s40313-022-00982-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2808311566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808311566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2324d69391ba1b75c70dfd126f618f052c42a3620b1bb766af0938c70d0fbf0f3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWGpfwNOC5-hM0s0mRylWhYoH9Ryyu0nZst3UzC7St3dri948zTB8_8_wMXaNcIsAxR3NQaLkIAQHMFpwecYmAk3OpTbm_HfXcMlmRBsAQI0C83zCnlbe1T7xZWzb-NV062wRO_IdDZTFkL0Mbd_wmEYkWyZX9U3sXHs6u7Xv-uxtT73f0hW7CK4lPzvNKftYPrwvnvjq9fF5cb_ilUTTcyHFvFZGGiwdlkVeFVCHGoUKCnWAXFRz4aQSUGJZFkq5AEbqAwWhDBDklN0ce3cpfg6eeruJQxqfIis0aImYKzVS4khVKRIlH-wuNVuX9hbBHqTZozQ7SrM_0qwcQ_IYohHu1j79Vf-T-gaWQG5F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808311566</pqid></control><display><type>article</type><title>Leader-Following Consensus of Multi-order Fractional Multi-agent Systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yahyapoor, Mehdi ; Tabatabaei, Mohammad</creator><creatorcontrib>Yahyapoor, Mehdi ; Tabatabaei, Mohammad</creatorcontrib><description>The current study investigates the leader-following consensus problem for fractional-order multi-agent systems with different fractional orders under a fixed undirected graph. A virtual leader with the desired path is assumed, while the agents are chosen as fractional-order integrators with various orders. It is proved that the leader-following consensus problem for this multi-agent system is equivalent to the stability analysis of a multi-order fractional system. At first, the Laplace transform is employed to verify the asymptotic stability of a particular case of multi-order fractional systems. It is shown that if the state matrix is negative definite and a certain inequality between the fractional orders is met, the mentioned system is asymptotically stable. This inequality can be easily checked without any need for complex calculations. Accordingly, it is demonstrated that if a certain inequality is met among the fractional orders of a multi-order multi-agent system, the leader-following consensus of the mentioned heterogeneous multi-agent system can be realized. Numerical examples demonstrate the accuracy of the established leader-following consensus protocol.</description><identifier>ISSN: 2195-3880</identifier><identifier>EISSN: 2195-3899</identifier><identifier>DOI: 10.1007/s40313-022-00982-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic properties ; Control ; Control and Systems Theory ; Electrical Engineering ; Engineering ; Inequality ; Laplace transforms ; Mathematical analysis ; Matrices (mathematics) ; Mechatronics ; Multiagent systems ; Robotics ; Robotics and Automation ; Stability analysis</subject><ispartof>Journal of control, automation & electrical systems, 2023-06, Vol.34 (3), p.530-540</ispartof><rights>Brazilian Society for Automatics--SBA 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2324d69391ba1b75c70dfd126f618f052c42a3620b1bb766af0938c70d0fbf0f3</citedby><cites>FETCH-LOGICAL-c319t-2324d69391ba1b75c70dfd126f618f052c42a3620b1bb766af0938c70d0fbf0f3</cites><orcidid>0000-0003-4307-2314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40313-022-00982-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40313-022-00982-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Yahyapoor, Mehdi</creatorcontrib><creatorcontrib>Tabatabaei, Mohammad</creatorcontrib><title>Leader-Following Consensus of Multi-order Fractional Multi-agent Systems</title><title>Journal of control, automation & electrical systems</title><addtitle>J Control Autom Electr Syst</addtitle><description>The current study investigates the leader-following consensus problem for fractional-order multi-agent systems with different fractional orders under a fixed undirected graph. A virtual leader with the desired path is assumed, while the agents are chosen as fractional-order integrators with various orders. It is proved that the leader-following consensus problem for this multi-agent system is equivalent to the stability analysis of a multi-order fractional system. At first, the Laplace transform is employed to verify the asymptotic stability of a particular case of multi-order fractional systems. It is shown that if the state matrix is negative definite and a certain inequality between the fractional orders is met, the mentioned system is asymptotically stable. This inequality can be easily checked without any need for complex calculations. Accordingly, it is demonstrated that if a certain inequality is met among the fractional orders of a multi-order multi-agent system, the leader-following consensus of the mentioned heterogeneous multi-agent system can be realized. Numerical examples demonstrate the accuracy of the established leader-following consensus protocol.</description><subject>Asymptotic properties</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Inequality</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Mechatronics</subject><subject>Multiagent systems</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Stability analysis</subject><issn>2195-3880</issn><issn>2195-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWGpfwNOC5-hM0s0mRylWhYoH9Ryyu0nZst3UzC7St3dri948zTB8_8_wMXaNcIsAxR3NQaLkIAQHMFpwecYmAk3OpTbm_HfXcMlmRBsAQI0C83zCnlbe1T7xZWzb-NV062wRO_IdDZTFkL0Mbd_wmEYkWyZX9U3sXHs6u7Xv-uxtT73f0hW7CK4lPzvNKftYPrwvnvjq9fF5cb_ilUTTcyHFvFZGGiwdlkVeFVCHGoUKCnWAXFRz4aQSUGJZFkq5AEbqAwWhDBDklN0ce3cpfg6eeruJQxqfIis0aImYKzVS4khVKRIlH-wuNVuX9hbBHqTZozQ7SrM_0qwcQ_IYohHu1j79Vf-T-gaWQG5F</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Yahyapoor, Mehdi</creator><creator>Tabatabaei, Mohammad</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4307-2314</orcidid></search><sort><creationdate>20230601</creationdate><title>Leader-Following Consensus of Multi-order Fractional Multi-agent Systems</title><author>Yahyapoor, Mehdi ; Tabatabaei, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2324d69391ba1b75c70dfd126f618f052c42a3620b1bb766af0938c70d0fbf0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Inequality</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Mechatronics</topic><topic>Multiagent systems</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yahyapoor, Mehdi</creatorcontrib><creatorcontrib>Tabatabaei, Mohammad</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of control, automation & electrical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yahyapoor, Mehdi</au><au>Tabatabaei, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leader-Following Consensus of Multi-order Fractional Multi-agent Systems</atitle><jtitle>Journal of control, automation & electrical systems</jtitle><stitle>J Control Autom Electr Syst</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>34</volume><issue>3</issue><spage>530</spage><epage>540</epage><pages>530-540</pages><issn>2195-3880</issn><eissn>2195-3899</eissn><abstract>The current study investigates the leader-following consensus problem for fractional-order multi-agent systems with different fractional orders under a fixed undirected graph. A virtual leader with the desired path is assumed, while the agents are chosen as fractional-order integrators with various orders. It is proved that the leader-following consensus problem for this multi-agent system is equivalent to the stability analysis of a multi-order fractional system. At first, the Laplace transform is employed to verify the asymptotic stability of a particular case of multi-order fractional systems. It is shown that if the state matrix is negative definite and a certain inequality between the fractional orders is met, the mentioned system is asymptotically stable. This inequality can be easily checked without any need for complex calculations. Accordingly, it is demonstrated that if a certain inequality is met among the fractional orders of a multi-order multi-agent system, the leader-following consensus of the mentioned heterogeneous multi-agent system can be realized. Numerical examples demonstrate the accuracy of the established leader-following consensus protocol.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40313-022-00982-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4307-2314</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-3880 |
ispartof | Journal of control, automation & electrical systems, 2023-06, Vol.34 (3), p.530-540 |
issn | 2195-3880 2195-3899 |
language | eng |
recordid | cdi_proquest_journals_2808311566 |
source | SpringerLink Journals - AutoHoldings |
subjects | Asymptotic properties Control Control and Systems Theory Electrical Engineering Engineering Inequality Laplace transforms Mathematical analysis Matrices (mathematics) Mechatronics Multiagent systems Robotics Robotics and Automation Stability analysis |
title | Leader-Following Consensus of Multi-order Fractional Multi-agent Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leader-Following%20Consensus%20of%20Multi-order%20Fractional%20Multi-agent%20Systems&rft.jtitle=Journal%20of%20control,%20automation%20&%20electrical%20systems&rft.au=Yahyapoor,%20Mehdi&rft.date=2023-06-01&rft.volume=34&rft.issue=3&rft.spage=530&rft.epage=540&rft.pages=530-540&rft.issn=2195-3880&rft.eissn=2195-3899&rft_id=info:doi/10.1007/s40313-022-00982-3&rft_dat=%3Cproquest_cross%3E2808311566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808311566&rft_id=info:pmid/&rfr_iscdi=true |