Correlating CSL Evolution and Strain Energy in Single Step Grain Boundary Engineered Austenitic Stainless Steel

Coincident site lattice (CSL) boundary evolution was investigated in 316LN SS subjected to single step thermomechanical treatment (TMT). Four different TMT processes constituting prior cold work (PCW) up to 5 pct and post annealing treatments up to 1273 K were examined. Remnant strain energy in each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2023-06, Vol.54 (6), p.2129-2132
Hauptverfasser: Palaparti, D. P. Rao, Vijayanand, V. D., Mariappan, K., Reddy, G. V. Prasad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2132
container_issue 6
container_start_page 2129
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 54
creator Palaparti, D. P. Rao
Vijayanand, V. D.
Mariappan, K.
Reddy, G. V. Prasad
description Coincident site lattice (CSL) boundary evolution was investigated in 316LN SS subjected to single step thermomechanical treatment (TMT). Four different TMT processes constituting prior cold work (PCW) up to 5 pct and post annealing treatments up to 1273 K were examined. Remnant strain energy in each TMT condition was calculated using Kernel Average Misorientation (KAM). Prevalence of strain-induced boundary migration (SIBM) being an underlying mechanism for CSL generation was examined using estimated remnant strain energy.
doi_str_mv 10.1007/s11661-023-07003-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2808092746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808092746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-50c894f5b55e1c679899587d1a091918f47c413e7f590488304ce93cff59ee723</originalsourceid><addsrcrecordid>eNp9kFFPwyAUhRujiXP6B3wi8bl6KVDgcS5zmizxYfpMKr1tulSY0Jrs38tWE9984nD5zrnhZNkthXsKIB8ipWVJcyhYDhKA5fQsm1HBk9AczpMGyXJRFuwyu4pxBwBUs3KW-aUPAftq6FxLltsNWX37fhw670jlarIdQtU5snIY2gNJapu4HtMc92R9env0o6urcEhQ2znEgDVZjHFA1w2dTWSCeozx6MH-Ortoqj7ize85z96fVm_L53zzun5ZLja5LSQMuQCrNG_EhxBIbSm10looWdMKNNVUNVxaThnKRmjgSjHgFjWzTbojyoLNs7spdx_814hxMDs_BpdWmkKBAl1IXiaqmCgbfIwBG7MP3Wf6jKFgjsWaqViTijWnYg1NJjaZYoJdi-Ev-h_XD2oleq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808092746</pqid></control><display><type>article</type><title>Correlating CSL Evolution and Strain Energy in Single Step Grain Boundary Engineered Austenitic Stainless Steel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Palaparti, D. P. Rao ; Vijayanand, V. D. ; Mariappan, K. ; Reddy, G. V. Prasad</creator><creatorcontrib>Palaparti, D. P. Rao ; Vijayanand, V. D. ; Mariappan, K. ; Reddy, G. V. Prasad</creatorcontrib><description>Coincident site lattice (CSL) boundary evolution was investigated in 316LN SS subjected to single step thermomechanical treatment (TMT). Four different TMT processes constituting prior cold work (PCW) up to 5 pct and post annealing treatments up to 1273 K were examined. Remnant strain energy in each TMT condition was calculated using Kernel Average Misorientation (KAM). Prevalence of strain-induced boundary migration (SIBM) being an underlying mechanism for CSL generation was examined using estimated remnant strain energy.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-023-07003-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annealing ; Austenitic stainless steels ; Brief Communication ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cold ; Energy ; Evolution ; Grain boundaries ; Investigations ; Materials Science ; Metallic Materials ; Metallurgy ; Misalignment ; Nanotechnology ; Stainless steel ; Strain energy ; Structural Materials ; Surfaces and Interfaces ; Thermomechanical treatment ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2023-06, Vol.54 (6), p.2129-2132</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2023. corrected publication 2023</rights><rights>The Minerals, Metals &amp; Materials Society and ASM International 2023. corrected publication 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-50c894f5b55e1c679899587d1a091918f47c413e7f590488304ce93cff59ee723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-023-07003-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-023-07003-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Palaparti, D. P. Rao</creatorcontrib><creatorcontrib>Vijayanand, V. D.</creatorcontrib><creatorcontrib>Mariappan, K.</creatorcontrib><creatorcontrib>Reddy, G. V. Prasad</creatorcontrib><title>Correlating CSL Evolution and Strain Energy in Single Step Grain Boundary Engineered Austenitic Stainless Steel</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Coincident site lattice (CSL) boundary evolution was investigated in 316LN SS subjected to single step thermomechanical treatment (TMT). Four different TMT processes constituting prior cold work (PCW) up to 5 pct and post annealing treatments up to 1273 K were examined. Remnant strain energy in each TMT condition was calculated using Kernel Average Misorientation (KAM). Prevalence of strain-induced boundary migration (SIBM) being an underlying mechanism for CSL generation was examined using estimated remnant strain energy.</description><subject>Annealing</subject><subject>Austenitic stainless steels</subject><subject>Brief Communication</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cold</subject><subject>Energy</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Investigations</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Misalignment</subject><subject>Nanotechnology</subject><subject>Stainless steel</subject><subject>Strain energy</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermomechanical treatment</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kFFPwyAUhRujiXP6B3wi8bl6KVDgcS5zmizxYfpMKr1tulSY0Jrs38tWE9984nD5zrnhZNkthXsKIB8ipWVJcyhYDhKA5fQsm1HBk9AczpMGyXJRFuwyu4pxBwBUs3KW-aUPAftq6FxLltsNWX37fhw670jlarIdQtU5snIY2gNJapu4HtMc92R9env0o6urcEhQ2znEgDVZjHFA1w2dTWSCeozx6MH-Ortoqj7ize85z96fVm_L53zzun5ZLja5LSQMuQCrNG_EhxBIbSm10looWdMKNNVUNVxaThnKRmjgSjHgFjWzTbojyoLNs7spdx_814hxMDs_BpdWmkKBAl1IXiaqmCgbfIwBG7MP3Wf6jKFgjsWaqViTijWnYg1NJjaZYoJdi-Ev-h_XD2oleq8</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Palaparti, D. P. Rao</creator><creator>Vijayanand, V. D.</creator><creator>Mariappan, K.</creator><creator>Reddy, G. V. Prasad</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230601</creationdate><title>Correlating CSL Evolution and Strain Energy in Single Step Grain Boundary Engineered Austenitic Stainless Steel</title><author>Palaparti, D. P. Rao ; Vijayanand, V. D. ; Mariappan, K. ; Reddy, G. V. Prasad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-50c894f5b55e1c679899587d1a091918f47c413e7f590488304ce93cff59ee723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>Austenitic stainless steels</topic><topic>Brief Communication</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cold</topic><topic>Energy</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Investigations</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Misalignment</topic><topic>Nanotechnology</topic><topic>Stainless steel</topic><topic>Strain energy</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermomechanical treatment</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palaparti, D. P. Rao</creatorcontrib><creatorcontrib>Vijayanand, V. D.</creatorcontrib><creatorcontrib>Mariappan, K.</creatorcontrib><creatorcontrib>Reddy, G. V. Prasad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palaparti, D. P. Rao</au><au>Vijayanand, V. D.</au><au>Mariappan, K.</au><au>Reddy, G. V. Prasad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlating CSL Evolution and Strain Energy in Single Step Grain Boundary Engineered Austenitic Stainless Steel</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>54</volume><issue>6</issue><spage>2129</spage><epage>2132</epage><pages>2129-2132</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Coincident site lattice (CSL) boundary evolution was investigated in 316LN SS subjected to single step thermomechanical treatment (TMT). Four different TMT processes constituting prior cold work (PCW) up to 5 pct and post annealing treatments up to 1273 K were examined. Remnant strain energy in each TMT condition was calculated using Kernel Average Misorientation (KAM). Prevalence of strain-induced boundary migration (SIBM) being an underlying mechanism for CSL generation was examined using estimated remnant strain energy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-023-07003-1</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2023-06, Vol.54 (6), p.2129-2132
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2808092746
source SpringerLink Journals - AutoHoldings
subjects Annealing
Austenitic stainless steels
Brief Communication
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cold
Energy
Evolution
Grain boundaries
Investigations
Materials Science
Metallic Materials
Metallurgy
Misalignment
Nanotechnology
Stainless steel
Strain energy
Structural Materials
Surfaces and Interfaces
Thermomechanical treatment
Thin Films
title Correlating CSL Evolution and Strain Energy in Single Step Grain Boundary Engineered Austenitic Stainless Steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlating%20CSL%20Evolution%20and%20Strain%20Energy%20in%20Single%20Step%20Grain%20Boundary%20Engineered%20Austenitic%20Stainless%20Steel&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Palaparti,%20D.%20P.%20Rao&rft.date=2023-06-01&rft.volume=54&rft.issue=6&rft.spage=2129&rft.epage=2132&rft.pages=2129-2132&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-023-07003-1&rft_dat=%3Cproquest_cross%3E2808092746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808092746&rft_id=info:pmid/&rfr_iscdi=true