Correlating CSL Evolution and Strain Energy in Single Step Grain Boundary Engineered Austenitic Stainless Steel
Coincident site lattice (CSL) boundary evolution was investigated in 316LN SS subjected to single step thermomechanical treatment (TMT). Four different TMT processes constituting prior cold work (PCW) up to 5 pct and post annealing treatments up to 1273 K were examined. Remnant strain energy in each...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2023-06, Vol.54 (6), p.2129-2132 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2132 |
---|---|
container_issue | 6 |
container_start_page | 2129 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 54 |
creator | Palaparti, D. P. Rao Vijayanand, V. D. Mariappan, K. Reddy, G. V. Prasad |
description | Coincident site lattice (CSL) boundary evolution was investigated in 316LN SS subjected to single step thermomechanical treatment (TMT). Four different TMT processes constituting prior cold work (PCW) up to 5 pct and post annealing treatments up to 1273 K were examined. Remnant strain energy in each TMT condition was calculated using Kernel Average Misorientation (KAM). Prevalence of strain-induced boundary migration (SIBM) being an underlying mechanism for CSL generation was examined using estimated remnant strain energy. |
doi_str_mv | 10.1007/s11661-023-07003-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2808092746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808092746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-50c894f5b55e1c679899587d1a091918f47c413e7f590488304ce93cff59ee723</originalsourceid><addsrcrecordid>eNp9kFFPwyAUhRujiXP6B3wi8bl6KVDgcS5zmizxYfpMKr1tulSY0Jrs38tWE9984nD5zrnhZNkthXsKIB8ipWVJcyhYDhKA5fQsm1HBk9AczpMGyXJRFuwyu4pxBwBUs3KW-aUPAftq6FxLltsNWX37fhw670jlarIdQtU5snIY2gNJapu4HtMc92R9env0o6urcEhQ2znEgDVZjHFA1w2dTWSCeozx6MH-Ortoqj7ize85z96fVm_L53zzun5ZLja5LSQMuQCrNG_EhxBIbSm10looWdMKNNVUNVxaThnKRmjgSjHgFjWzTbojyoLNs7spdx_814hxMDs_BpdWmkKBAl1IXiaqmCgbfIwBG7MP3Wf6jKFgjsWaqViTijWnYg1NJjaZYoJdi-Ev-h_XD2oleq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808092746</pqid></control><display><type>article</type><title>Correlating CSL Evolution and Strain Energy in Single Step Grain Boundary Engineered Austenitic Stainless Steel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Palaparti, D. P. Rao ; Vijayanand, V. D. ; Mariappan, K. ; Reddy, G. V. Prasad</creator><creatorcontrib>Palaparti, D. P. Rao ; Vijayanand, V. D. ; Mariappan, K. ; Reddy, G. V. Prasad</creatorcontrib><description>Coincident site lattice (CSL) boundary evolution was investigated in 316LN SS subjected to single step thermomechanical treatment (TMT). Four different TMT processes constituting prior cold work (PCW) up to 5 pct and post annealing treatments up to 1273 K were examined. Remnant strain energy in each TMT condition was calculated using Kernel Average Misorientation (KAM). Prevalence of strain-induced boundary migration (SIBM) being an underlying mechanism for CSL generation was examined using estimated remnant strain energy.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-023-07003-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annealing ; Austenitic stainless steels ; Brief Communication ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cold ; Energy ; Evolution ; Grain boundaries ; Investigations ; Materials Science ; Metallic Materials ; Metallurgy ; Misalignment ; Nanotechnology ; Stainless steel ; Strain energy ; Structural Materials ; Surfaces and Interfaces ; Thermomechanical treatment ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2023-06, Vol.54 (6), p.2129-2132</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2023. corrected publication 2023</rights><rights>The Minerals, Metals & Materials Society and ASM International 2023. corrected publication 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-50c894f5b55e1c679899587d1a091918f47c413e7f590488304ce93cff59ee723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-023-07003-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-023-07003-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Palaparti, D. P. Rao</creatorcontrib><creatorcontrib>Vijayanand, V. D.</creatorcontrib><creatorcontrib>Mariappan, K.</creatorcontrib><creatorcontrib>Reddy, G. V. Prasad</creatorcontrib><title>Correlating CSL Evolution and Strain Energy in Single Step Grain Boundary Engineered Austenitic Stainless Steel</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Coincident site lattice (CSL) boundary evolution was investigated in 316LN SS subjected to single step thermomechanical treatment (TMT). Four different TMT processes constituting prior cold work (PCW) up to 5 pct and post annealing treatments up to 1273 K were examined. Remnant strain energy in each TMT condition was calculated using Kernel Average Misorientation (KAM). Prevalence of strain-induced boundary migration (SIBM) being an underlying mechanism for CSL generation was examined using estimated remnant strain energy.</description><subject>Annealing</subject><subject>Austenitic stainless steels</subject><subject>Brief Communication</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cold</subject><subject>Energy</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Investigations</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Misalignment</subject><subject>Nanotechnology</subject><subject>Stainless steel</subject><subject>Strain energy</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermomechanical treatment</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kFFPwyAUhRujiXP6B3wi8bl6KVDgcS5zmizxYfpMKr1tulSY0Jrs38tWE9984nD5zrnhZNkthXsKIB8ipWVJcyhYDhKA5fQsm1HBk9AczpMGyXJRFuwyu4pxBwBUs3KW-aUPAftq6FxLltsNWX37fhw670jlarIdQtU5snIY2gNJapu4HtMc92R9env0o6urcEhQ2znEgDVZjHFA1w2dTWSCeozx6MH-Ortoqj7ize85z96fVm_L53zzun5ZLja5LSQMuQCrNG_EhxBIbSm10looWdMKNNVUNVxaThnKRmjgSjHgFjWzTbojyoLNs7spdx_814hxMDs_BpdWmkKBAl1IXiaqmCgbfIwBG7MP3Wf6jKFgjsWaqViTijWnYg1NJjaZYoJdi-Ev-h_XD2oleq8</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Palaparti, D. P. Rao</creator><creator>Vijayanand, V. D.</creator><creator>Mariappan, K.</creator><creator>Reddy, G. V. Prasad</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230601</creationdate><title>Correlating CSL Evolution and Strain Energy in Single Step Grain Boundary Engineered Austenitic Stainless Steel</title><author>Palaparti, D. P. Rao ; Vijayanand, V. D. ; Mariappan, K. ; Reddy, G. V. Prasad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-50c894f5b55e1c679899587d1a091918f47c413e7f590488304ce93cff59ee723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>Austenitic stainless steels</topic><topic>Brief Communication</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cold</topic><topic>Energy</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Investigations</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Misalignment</topic><topic>Nanotechnology</topic><topic>Stainless steel</topic><topic>Strain energy</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermomechanical treatment</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palaparti, D. P. Rao</creatorcontrib><creatorcontrib>Vijayanand, V. D.</creatorcontrib><creatorcontrib>Mariappan, K.</creatorcontrib><creatorcontrib>Reddy, G. V. Prasad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palaparti, D. P. Rao</au><au>Vijayanand, V. D.</au><au>Mariappan, K.</au><au>Reddy, G. V. Prasad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlating CSL Evolution and Strain Energy in Single Step Grain Boundary Engineered Austenitic Stainless Steel</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>54</volume><issue>6</issue><spage>2129</spage><epage>2132</epage><pages>2129-2132</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Coincident site lattice (CSL) boundary evolution was investigated in 316LN SS subjected to single step thermomechanical treatment (TMT). Four different TMT processes constituting prior cold work (PCW) up to 5 pct and post annealing treatments up to 1273 K were examined. Remnant strain energy in each TMT condition was calculated using Kernel Average Misorientation (KAM). Prevalence of strain-induced boundary migration (SIBM) being an underlying mechanism for CSL generation was examined using estimated remnant strain energy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-023-07003-1</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2023-06, Vol.54 (6), p.2129-2132 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_2808092746 |
source | SpringerLink Journals - AutoHoldings |
subjects | Annealing Austenitic stainless steels Brief Communication Characterization and Evaluation of Materials Chemistry and Materials Science Cold Energy Evolution Grain boundaries Investigations Materials Science Metallic Materials Metallurgy Misalignment Nanotechnology Stainless steel Strain energy Structural Materials Surfaces and Interfaces Thermomechanical treatment Thin Films |
title | Correlating CSL Evolution and Strain Energy in Single Step Grain Boundary Engineered Austenitic Stainless Steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlating%20CSL%20Evolution%20and%20Strain%20Energy%20in%20Single%20Step%20Grain%20Boundary%20Engineered%20Austenitic%20Stainless%20Steel&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Palaparti,%20D.%20P.%20Rao&rft.date=2023-06-01&rft.volume=54&rft.issue=6&rft.spage=2129&rft.epage=2132&rft.pages=2129-2132&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-023-07003-1&rft_dat=%3Cproquest_cross%3E2808092746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808092746&rft_id=info:pmid/&rfr_iscdi=true |