Electrochemical Performance of Carbon Materials
The surface modification on electrode materials generally improves the electron mobility and surface interactions at carbon materials. Exfoliate graphite has been prepared by the ball milling technique with three different milling time. The graphene oxide, reduced graphene oxide were prepared modifi...
Gespeichert in:
Veröffentlicht in: | Oriental journal of chemistry 2022-06, Vol.38 (3), p.604-609 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 609 |
---|---|
container_issue | 3 |
container_start_page | 604 |
container_title | Oriental journal of chemistry |
container_volume | 38 |
creator | P. Nandakumar, P. Nandakumar Sankar, K. N. Amba Ganesh, A. Shankar BA. Anandh, BA. Anandh R. Deepa, R. Deepa |
description | The surface modification on electrode materials generally improves the electron mobility and surface interactions at carbon materials. Exfoliate graphite has been prepared by the ball milling technique with three different milling time. The graphene oxide, reduced graphene oxide were prepared modified Hummers method and carbon quantum dots was prepared using chemical synthesis-pyrolysis technique. The synthesized materials were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), and investigated the electrochemical performances of Cyclic Voltammetry (CV) analysis to understand their specific capacitance. |
doi_str_mv | 10.13005/ojc/380308 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807989444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807989444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-f66709f97d698aa5b20a10119d01238dbc615488029d646e2482365f067b16cc3</originalsourceid><addsrcrecordid>eNotkEtLxDAYRYMoWMZZ-QcKLqX2y6NpspQyPmDEWYzgLqRpgi1tMyadhf_eYL2bs7ncCwehWwwPmAJUpR9MSQVQEBcoI4TiogIqL1EGsoYCCHxeo22MA6RIRjmuMlTuRmuW4M2XnXqjx_xgg_Nh0rOxuXd5o0Pr5_xNLzb0eow36Mol2O0_N-jjaXdsXor9-_Nr87gvDCFiKRznNUgn645LoXXVEtAYMJYdYEJF15r0zoQAIjvOuCVMEMorB7xuMTeGbtDdunsK_vts46IGfw5zulREQC2FZIyl1v3aMsHHGKxTp9BPOvwoDOpPikpS1CqF_gJzoVHB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807989444</pqid></control><display><type>article</type><title>Electrochemical Performance of Carbon Materials</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>P. Nandakumar, P. Nandakumar ; Sankar, K. N. Amba ; Ganesh, A. Shankar ; BA. Anandh, BA. Anandh ; R. Deepa, R. Deepa</creator><creatorcontrib>P. Nandakumar, P. Nandakumar ; Sankar, K. N. Amba ; Ganesh, A. Shankar ; BA. Anandh, BA. Anandh ; R. Deepa, R. Deepa</creatorcontrib><description>The surface modification on electrode materials generally improves the electron mobility and surface interactions at carbon materials. Exfoliate graphite has been prepared by the ball milling technique with three different milling time. The graphene oxide, reduced graphene oxide were prepared modified Hummers method and carbon quantum dots was prepared using chemical synthesis-pyrolysis technique. The synthesized materials were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), and investigated the electrochemical performances of Cyclic Voltammetry (CV) analysis to understand their specific capacitance.</description><identifier>ISSN: 0970-020X</identifier><identifier>EISSN: 2231-5039</identifier><identifier>DOI: 10.13005/ojc/380308</identifier><language>eng</language><publisher>Bhopal: Oriental Scientific Publishing Company</publisher><subject>Alternative energy ; Atoms & subatomic particles ; Ball milling ; Carbon ; Chemical synthesis ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electron mobility ; Energy storage ; Grain size ; Graphene ; Graphite ; Nanomaterials ; Nanoparticles ; Pyrolysis ; Quantum dots ; Stainless steel ; Voltammetry</subject><ispartof>Oriental journal of chemistry, 2022-06, Vol.38 (3), p.604-609</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c228t-f66709f97d698aa5b20a10119d01238dbc615488029d646e2482365f067b16cc3</citedby><cites>FETCH-LOGICAL-c228t-f66709f97d698aa5b20a10119d01238dbc615488029d646e2482365f067b16cc3</cites><orcidid>0000-0001-7010-2983 ; 0000-0002-8258-8519 ; 0000-0001-6004-9429 ; 0000-0003-3089-1919 ; 0000-0001-9825-4794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>P. Nandakumar, P. Nandakumar</creatorcontrib><creatorcontrib>Sankar, K. N. Amba</creatorcontrib><creatorcontrib>Ganesh, A. Shankar</creatorcontrib><creatorcontrib>BA. Anandh, BA. Anandh</creatorcontrib><creatorcontrib>R. Deepa, R. Deepa</creatorcontrib><title>Electrochemical Performance of Carbon Materials</title><title>Oriental journal of chemistry</title><description>The surface modification on electrode materials generally improves the electron mobility and surface interactions at carbon materials. Exfoliate graphite has been prepared by the ball milling technique with three different milling time. The graphene oxide, reduced graphene oxide were prepared modified Hummers method and carbon quantum dots was prepared using chemical synthesis-pyrolysis technique. The synthesized materials were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), and investigated the electrochemical performances of Cyclic Voltammetry (CV) analysis to understand their specific capacitance.</description><subject>Alternative energy</subject><subject>Atoms & subatomic particles</subject><subject>Ball milling</subject><subject>Carbon</subject><subject>Chemical synthesis</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron mobility</subject><subject>Energy storage</subject><subject>Grain size</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Pyrolysis</subject><subject>Quantum dots</subject><subject>Stainless steel</subject><subject>Voltammetry</subject><issn>0970-020X</issn><issn>2231-5039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkEtLxDAYRYMoWMZZ-QcKLqX2y6NpspQyPmDEWYzgLqRpgi1tMyadhf_eYL2bs7ncCwehWwwPmAJUpR9MSQVQEBcoI4TiogIqL1EGsoYCCHxeo22MA6RIRjmuMlTuRmuW4M2XnXqjx_xgg_Nh0rOxuXd5o0Pr5_xNLzb0eow36Mol2O0_N-jjaXdsXor9-_Nr87gvDCFiKRznNUgn645LoXXVEtAYMJYdYEJF15r0zoQAIjvOuCVMEMorB7xuMTeGbtDdunsK_vts46IGfw5zulREQC2FZIyl1v3aMsHHGKxTp9BPOvwoDOpPikpS1CqF_gJzoVHB</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>P. Nandakumar, P. Nandakumar</creator><creator>Sankar, K. N. Amba</creator><creator>Ganesh, A. Shankar</creator><creator>BA. Anandh, BA. Anandh</creator><creator>R. Deepa, R. Deepa</creator><general>Oriental Scientific Publishing Company</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7010-2983</orcidid><orcidid>https://orcid.org/0000-0002-8258-8519</orcidid><orcidid>https://orcid.org/0000-0001-6004-9429</orcidid><orcidid>https://orcid.org/0000-0003-3089-1919</orcidid><orcidid>https://orcid.org/0000-0001-9825-4794</orcidid></search><sort><creationdate>20220630</creationdate><title>Electrochemical Performance of Carbon Materials</title><author>P. Nandakumar, P. Nandakumar ; Sankar, K. N. Amba ; Ganesh, A. Shankar ; BA. Anandh, BA. Anandh ; R. Deepa, R. Deepa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-f66709f97d698aa5b20a10119d01238dbc615488029d646e2482365f067b16cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy</topic><topic>Atoms & subatomic particles</topic><topic>Ball milling</topic><topic>Carbon</topic><topic>Chemical synthesis</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron mobility</topic><topic>Energy storage</topic><topic>Grain size</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Pyrolysis</topic><topic>Quantum dots</topic><topic>Stainless steel</topic><topic>Voltammetry</topic><toplevel>online_resources</toplevel><creatorcontrib>P. Nandakumar, P. Nandakumar</creatorcontrib><creatorcontrib>Sankar, K. N. Amba</creatorcontrib><creatorcontrib>Ganesh, A. Shankar</creatorcontrib><creatorcontrib>BA. Anandh, BA. Anandh</creatorcontrib><creatorcontrib>R. Deepa, R. Deepa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Oriental journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>P. Nandakumar, P. Nandakumar</au><au>Sankar, K. N. Amba</au><au>Ganesh, A. Shankar</au><au>BA. Anandh, BA. Anandh</au><au>R. Deepa, R. Deepa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Performance of Carbon Materials</atitle><jtitle>Oriental journal of chemistry</jtitle><date>2022-06-30</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><spage>604</spage><epage>609</epage><pages>604-609</pages><issn>0970-020X</issn><eissn>2231-5039</eissn><abstract>The surface modification on electrode materials generally improves the electron mobility and surface interactions at carbon materials. Exfoliate graphite has been prepared by the ball milling technique with three different milling time. The graphene oxide, reduced graphene oxide were prepared modified Hummers method and carbon quantum dots was prepared using chemical synthesis-pyrolysis technique. The synthesized materials were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), and investigated the electrochemical performances of Cyclic Voltammetry (CV) analysis to understand their specific capacitance.</abstract><cop>Bhopal</cop><pub>Oriental Scientific Publishing Company</pub><doi>10.13005/ojc/380308</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7010-2983</orcidid><orcidid>https://orcid.org/0000-0002-8258-8519</orcidid><orcidid>https://orcid.org/0000-0001-6004-9429</orcidid><orcidid>https://orcid.org/0000-0003-3089-1919</orcidid><orcidid>https://orcid.org/0000-0001-9825-4794</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0970-020X |
ispartof | Oriental journal of chemistry, 2022-06, Vol.38 (3), p.604-609 |
issn | 0970-020X 2231-5039 |
language | eng |
recordid | cdi_proquest_journals_2807989444 |
source | EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Alternative energy Atoms & subatomic particles Ball milling Carbon Chemical synthesis Electrochemical analysis Electrode materials Electrodes Electron mobility Energy storage Grain size Graphene Graphite Nanomaterials Nanoparticles Pyrolysis Quantum dots Stainless steel Voltammetry |
title | Electrochemical Performance of Carbon Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Performance%20of%20Carbon%20Materials&rft.jtitle=Oriental%20journal%20of%20chemistry&rft.au=P.%20Nandakumar,%20P.%20Nandakumar&rft.date=2022-06-30&rft.volume=38&rft.issue=3&rft.spage=604&rft.epage=609&rft.pages=604-609&rft.issn=0970-020X&rft.eissn=2231-5039&rft_id=info:doi/10.13005/ojc/380308&rft_dat=%3Cproquest_cross%3E2807989444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807989444&rft_id=info:pmid/&rfr_iscdi=true |