Electrochemical Performance of Carbon Materials

The surface modification on electrode materials generally improves the electron mobility and surface interactions at carbon materials. Exfoliate graphite has been prepared by the ball milling technique with three different milling time. The graphene oxide, reduced graphene oxide were prepared modifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oriental journal of chemistry 2022-06, Vol.38 (3), p.604-609
Hauptverfasser: P. Nandakumar, P. Nandakumar, Sankar, K. N. Amba, Ganesh, A. Shankar, BA. Anandh, BA. Anandh, R. Deepa, R. Deepa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 609
container_issue 3
container_start_page 604
container_title Oriental journal of chemistry
container_volume 38
creator P. Nandakumar, P. Nandakumar
Sankar, K. N. Amba
Ganesh, A. Shankar
BA. Anandh, BA. Anandh
R. Deepa, R. Deepa
description The surface modification on electrode materials generally improves the electron mobility and surface interactions at carbon materials. Exfoliate graphite has been prepared by the ball milling technique with three different milling time. The graphene oxide, reduced graphene oxide were prepared modified Hummers method and carbon quantum dots was prepared using chemical synthesis-pyrolysis technique. The synthesized materials were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), and investigated the electrochemical performances of Cyclic Voltammetry (CV) analysis to understand their specific capacitance.
doi_str_mv 10.13005/ojc/380308
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807989444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807989444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-f66709f97d698aa5b20a10119d01238dbc615488029d646e2482365f067b16cc3</originalsourceid><addsrcrecordid>eNotkEtLxDAYRYMoWMZZ-QcKLqX2y6NpspQyPmDEWYzgLqRpgi1tMyadhf_eYL2bs7ncCwehWwwPmAJUpR9MSQVQEBcoI4TiogIqL1EGsoYCCHxeo22MA6RIRjmuMlTuRmuW4M2XnXqjx_xgg_Nh0rOxuXd5o0Pr5_xNLzb0eow36Mol2O0_N-jjaXdsXor9-_Nr87gvDCFiKRznNUgn645LoXXVEtAYMJYdYEJF15r0zoQAIjvOuCVMEMorB7xuMTeGbtDdunsK_vts46IGfw5zulREQC2FZIyl1v3aMsHHGKxTp9BPOvwoDOpPikpS1CqF_gJzoVHB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807989444</pqid></control><display><type>article</type><title>Electrochemical Performance of Carbon Materials</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>P. Nandakumar, P. Nandakumar ; Sankar, K. N. Amba ; Ganesh, A. Shankar ; BA. Anandh, BA. Anandh ; R. Deepa, R. Deepa</creator><creatorcontrib>P. Nandakumar, P. Nandakumar ; Sankar, K. N. Amba ; Ganesh, A. Shankar ; BA. Anandh, BA. Anandh ; R. Deepa, R. Deepa</creatorcontrib><description>The surface modification on electrode materials generally improves the electron mobility and surface interactions at carbon materials. Exfoliate graphite has been prepared by the ball milling technique with three different milling time. The graphene oxide, reduced graphene oxide were prepared modified Hummers method and carbon quantum dots was prepared using chemical synthesis-pyrolysis technique. The synthesized materials were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), and investigated the electrochemical performances of Cyclic Voltammetry (CV) analysis to understand their specific capacitance.</description><identifier>ISSN: 0970-020X</identifier><identifier>EISSN: 2231-5039</identifier><identifier>DOI: 10.13005/ojc/380308</identifier><language>eng</language><publisher>Bhopal: Oriental Scientific Publishing Company</publisher><subject>Alternative energy ; Atoms &amp; subatomic particles ; Ball milling ; Carbon ; Chemical synthesis ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electron mobility ; Energy storage ; Grain size ; Graphene ; Graphite ; Nanomaterials ; Nanoparticles ; Pyrolysis ; Quantum dots ; Stainless steel ; Voltammetry</subject><ispartof>Oriental journal of chemistry, 2022-06, Vol.38 (3), p.604-609</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c228t-f66709f97d698aa5b20a10119d01238dbc615488029d646e2482365f067b16cc3</citedby><cites>FETCH-LOGICAL-c228t-f66709f97d698aa5b20a10119d01238dbc615488029d646e2482365f067b16cc3</cites><orcidid>0000-0001-7010-2983 ; 0000-0002-8258-8519 ; 0000-0001-6004-9429 ; 0000-0003-3089-1919 ; 0000-0001-9825-4794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>P. Nandakumar, P. Nandakumar</creatorcontrib><creatorcontrib>Sankar, K. N. Amba</creatorcontrib><creatorcontrib>Ganesh, A. Shankar</creatorcontrib><creatorcontrib>BA. Anandh, BA. Anandh</creatorcontrib><creatorcontrib>R. Deepa, R. Deepa</creatorcontrib><title>Electrochemical Performance of Carbon Materials</title><title>Oriental journal of chemistry</title><description>The surface modification on electrode materials generally improves the electron mobility and surface interactions at carbon materials. Exfoliate graphite has been prepared by the ball milling technique with three different milling time. The graphene oxide, reduced graphene oxide were prepared modified Hummers method and carbon quantum dots was prepared using chemical synthesis-pyrolysis technique. The synthesized materials were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), and investigated the electrochemical performances of Cyclic Voltammetry (CV) analysis to understand their specific capacitance.</description><subject>Alternative energy</subject><subject>Atoms &amp; subatomic particles</subject><subject>Ball milling</subject><subject>Carbon</subject><subject>Chemical synthesis</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron mobility</subject><subject>Energy storage</subject><subject>Grain size</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Pyrolysis</subject><subject>Quantum dots</subject><subject>Stainless steel</subject><subject>Voltammetry</subject><issn>0970-020X</issn><issn>2231-5039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkEtLxDAYRYMoWMZZ-QcKLqX2y6NpspQyPmDEWYzgLqRpgi1tMyadhf_eYL2bs7ncCwehWwwPmAJUpR9MSQVQEBcoI4TiogIqL1EGsoYCCHxeo22MA6RIRjmuMlTuRmuW4M2XnXqjx_xgg_Nh0rOxuXd5o0Pr5_xNLzb0eow36Mol2O0_N-jjaXdsXor9-_Nr87gvDCFiKRznNUgn645LoXXVEtAYMJYdYEJF15r0zoQAIjvOuCVMEMorB7xuMTeGbtDdunsK_vts46IGfw5zulREQC2FZIyl1v3aMsHHGKxTp9BPOvwoDOpPikpS1CqF_gJzoVHB</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>P. Nandakumar, P. Nandakumar</creator><creator>Sankar, K. N. Amba</creator><creator>Ganesh, A. Shankar</creator><creator>BA. Anandh, BA. Anandh</creator><creator>R. Deepa, R. Deepa</creator><general>Oriental Scientific Publishing Company</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7010-2983</orcidid><orcidid>https://orcid.org/0000-0002-8258-8519</orcidid><orcidid>https://orcid.org/0000-0001-6004-9429</orcidid><orcidid>https://orcid.org/0000-0003-3089-1919</orcidid><orcidid>https://orcid.org/0000-0001-9825-4794</orcidid></search><sort><creationdate>20220630</creationdate><title>Electrochemical Performance of Carbon Materials</title><author>P. Nandakumar, P. Nandakumar ; Sankar, K. N. Amba ; Ganesh, A. Shankar ; BA. Anandh, BA. Anandh ; R. Deepa, R. Deepa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-f66709f97d698aa5b20a10119d01238dbc615488029d646e2482365f067b16cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy</topic><topic>Atoms &amp; subatomic particles</topic><topic>Ball milling</topic><topic>Carbon</topic><topic>Chemical synthesis</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron mobility</topic><topic>Energy storage</topic><topic>Grain size</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Pyrolysis</topic><topic>Quantum dots</topic><topic>Stainless steel</topic><topic>Voltammetry</topic><toplevel>online_resources</toplevel><creatorcontrib>P. Nandakumar, P. Nandakumar</creatorcontrib><creatorcontrib>Sankar, K. N. Amba</creatorcontrib><creatorcontrib>Ganesh, A. Shankar</creatorcontrib><creatorcontrib>BA. Anandh, BA. Anandh</creatorcontrib><creatorcontrib>R. Deepa, R. Deepa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Oriental journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>P. Nandakumar, P. Nandakumar</au><au>Sankar, K. N. Amba</au><au>Ganesh, A. Shankar</au><au>BA. Anandh, BA. Anandh</au><au>R. Deepa, R. Deepa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Performance of Carbon Materials</atitle><jtitle>Oriental journal of chemistry</jtitle><date>2022-06-30</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><spage>604</spage><epage>609</epage><pages>604-609</pages><issn>0970-020X</issn><eissn>2231-5039</eissn><abstract>The surface modification on electrode materials generally improves the electron mobility and surface interactions at carbon materials. Exfoliate graphite has been prepared by the ball milling technique with three different milling time. The graphene oxide, reduced graphene oxide were prepared modified Hummers method and carbon quantum dots was prepared using chemical synthesis-pyrolysis technique. The synthesized materials were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), and investigated the electrochemical performances of Cyclic Voltammetry (CV) analysis to understand their specific capacitance.</abstract><cop>Bhopal</cop><pub>Oriental Scientific Publishing Company</pub><doi>10.13005/ojc/380308</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7010-2983</orcidid><orcidid>https://orcid.org/0000-0002-8258-8519</orcidid><orcidid>https://orcid.org/0000-0001-6004-9429</orcidid><orcidid>https://orcid.org/0000-0003-3089-1919</orcidid><orcidid>https://orcid.org/0000-0001-9825-4794</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0970-020X
ispartof Oriental journal of chemistry, 2022-06, Vol.38 (3), p.604-609
issn 0970-020X
2231-5039
language eng
recordid cdi_proquest_journals_2807989444
source EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Alternative energy
Atoms & subatomic particles
Ball milling
Carbon
Chemical synthesis
Electrochemical analysis
Electrode materials
Electrodes
Electron mobility
Energy storage
Grain size
Graphene
Graphite
Nanomaterials
Nanoparticles
Pyrolysis
Quantum dots
Stainless steel
Voltammetry
title Electrochemical Performance of Carbon Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Performance%20of%20Carbon%20Materials&rft.jtitle=Oriental%20journal%20of%20chemistry&rft.au=P.%20Nandakumar,%20P.%20Nandakumar&rft.date=2022-06-30&rft.volume=38&rft.issue=3&rft.spage=604&rft.epage=609&rft.pages=604-609&rft.issn=0970-020X&rft.eissn=2231-5039&rft_id=info:doi/10.13005/ojc/380308&rft_dat=%3Cproquest_cross%3E2807989444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807989444&rft_id=info:pmid/&rfr_iscdi=true