A probabilistic Bayesian methodology for the strain-rate correction of dynamic CPTu data
Dynamic Cone Penetration Test (CPTu) profile offshore sediments by impact penetration. To exploit their results in full, the measured data are converted to obtain a quasi-static equivalent profile. Dynamic CPTu conversion requires calibrated correction models. Calibration is currently done by using...
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 2023-05, Vol.60 (5), p.669-686 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 686 |
---|---|
container_issue | 5 |
container_start_page | 669 |
container_title | Canadian geotechnical journal |
container_volume | 60 |
creator | Collico, Stefano Arroyo, Marcos Kopf, Achim Devincenzi, Marcelo |
description | Dynamic Cone Penetration Test (CPTu) profile offshore sediments by impact penetration. To exploit their results in full, the measured data are converted to obtain a quasi-static equivalent profile. Dynamic CPTu conversion requires calibrated correction models. Calibration is currently done by using paired (i.e., very close) quasi-static and dynamic tests. It is shown here that paired test data, which may be inconvenient to acquire offshore, are not strictly necessary to convert dynamic CPTu data. A new probabilistic methodology is proposed to call upon quasi-static results from a much wider area in the conversion procedure. Those results feed the prior distribution of a converted profile, within a Bayesian updating scheme where strain-rate coefficient and correction model error are also described by updated stochastic variables. The updating scheme is solved numerically using the Transitional Markov Chain Monte Carlo sampling algorithm. To avoid undue influence of local profile heterogeneity, the statistic treatment of the quasi-static CPTu data takes place in the frequency domain, using a discrete cosine transform. The new procedure is applied to a CPTu campaign offshore Nice (France): dynamic tests are converted with equal precision using quasi-static data acquired at distances orders of magnitude larger than what was previously employed. |
doi_str_mv | 10.1139/cgj-2022-0311 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2807854825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749069600</galeid><sourcerecordid>A749069600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-6175243a731310e02c3db44706c665da0a5784950fa49c29f43cb65895f3d64a3</originalsourceid><addsrcrecordid>eNqVkk2LFDEQhoMoOK4evQc9eei18tndx3FYdWFR0RW8hZp00puhpzObZMD592ZQ0IW-SB2qKJ6q4i1eQl4yuGRM9G_tuGs4cN6AYOwRWTEOXaOBwWOyAqi10K18Sp7lvANgUnK-Ij_W9JDiFrdhCrkES9_hyeWAM927cheHOMXxRH1MtNw5mkvCMDcJi6M2puRsCXGm0dPhNOO-jm--3B7pgAWfkycep-xe_MkX5Pv7q9vNx-bm84frzfqmsQpkaTRrFZcCW8EEAwfcimErZQvaaq0GBFRtJ3sFHmVvee-lsFutul55MWiJ4oK8_r23yrg_ulzMLh7TXE8a3kHbKdlx9ZcacXImzD5WJXYfsjXrVvagew1QqWaBGt3sEk5xdj7U9gP-1QJvD-He_AtdLkA1Blcftrj1zYOByhT3s4x4zNlcf_v6H-ynRXU2xZyT8-aQwh7TyTAwZwOZaiBzNpA5G0j8AjXjsm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807854825</pqid></control><display><type>article</type><title>A probabilistic Bayesian methodology for the strain-rate correction of dynamic CPTu data</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>Collico, Stefano ; Arroyo, Marcos ; Kopf, Achim ; Devincenzi, Marcelo</creator><creatorcontrib>Collico, Stefano ; Arroyo, Marcos ; Kopf, Achim ; Devincenzi, Marcelo</creatorcontrib><description>Dynamic Cone Penetration Test (CPTu) profile offshore sediments by impact penetration. To exploit their results in full, the measured data are converted to obtain a quasi-static equivalent profile. Dynamic CPTu conversion requires calibrated correction models. Calibration is currently done by using paired (i.e., very close) quasi-static and dynamic tests. It is shown here that paired test data, which may be inconvenient to acquire offshore, are not strictly necessary to convert dynamic CPTu data. A new probabilistic methodology is proposed to call upon quasi-static results from a much wider area in the conversion procedure. Those results feed the prior distribution of a converted profile, within a Bayesian updating scheme where strain-rate coefficient and correction model error are also described by updated stochastic variables. The updating scheme is solved numerically using the Transitional Markov Chain Monte Carlo sampling algorithm. To avoid undue influence of local profile heterogeneity, the statistic treatment of the quasi-static CPTu data takes place in the frequency domain, using a discrete cosine transform. The new procedure is applied to a CPTu campaign offshore Nice (France): dynamic tests are converted with equal precision using quasi-static data acquired at distances orders of magnitude larger than what was previously employed.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2022-0311</identifier><language>eng</language><publisher>Ottawa: NRC Research Press</publisher><subject>Algorithms ; Bayesian analysis ; Bayesian theory ; Cone penetration tests ; Conversion ; Data acquisition ; Discrete cosine transform ; Dynamic testing ; Dynamic tests ; Error correction ; Heterogeneity ; Markov chains ; Markov processes ; Mathematical models ; Mechanical properties ; Methods ; Monte Carlo method ; Offshore ; Probability theory ; Procedures ; Sediments ; Sediments (Geology) ; Statistical analysis ; Statistical methods ; Stochasticity ; Strain rate ; Testing</subject><ispartof>Canadian geotechnical journal, 2023-05, Vol.60 (5), p.669-686</ispartof><rights>COPYRIGHT 2023 NRC Research Press</rights><rights>2022 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-6175243a731310e02c3db44706c665da0a5784950fa49c29f43cb65895f3d64a3</citedby><cites>FETCH-LOGICAL-c504t-6175243a731310e02c3db44706c665da0a5784950fa49c29f43cb65895f3d64a3</cites><orcidid>0000-0001-9384-9107 ; 0000-0003-2834-9813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Collico, Stefano</creatorcontrib><creatorcontrib>Arroyo, Marcos</creatorcontrib><creatorcontrib>Kopf, Achim</creatorcontrib><creatorcontrib>Devincenzi, Marcelo</creatorcontrib><title>A probabilistic Bayesian methodology for the strain-rate correction of dynamic CPTu data</title><title>Canadian geotechnical journal</title><description>Dynamic Cone Penetration Test (CPTu) profile offshore sediments by impact penetration. To exploit their results in full, the measured data are converted to obtain a quasi-static equivalent profile. Dynamic CPTu conversion requires calibrated correction models. Calibration is currently done by using paired (i.e., very close) quasi-static and dynamic tests. It is shown here that paired test data, which may be inconvenient to acquire offshore, are not strictly necessary to convert dynamic CPTu data. A new probabilistic methodology is proposed to call upon quasi-static results from a much wider area in the conversion procedure. Those results feed the prior distribution of a converted profile, within a Bayesian updating scheme where strain-rate coefficient and correction model error are also described by updated stochastic variables. The updating scheme is solved numerically using the Transitional Markov Chain Monte Carlo sampling algorithm. To avoid undue influence of local profile heterogeneity, the statistic treatment of the quasi-static CPTu data takes place in the frequency domain, using a discrete cosine transform. The new procedure is applied to a CPTu campaign offshore Nice (France): dynamic tests are converted with equal precision using quasi-static data acquired at distances orders of magnitude larger than what was previously employed.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Cone penetration tests</subject><subject>Conversion</subject><subject>Data acquisition</subject><subject>Discrete cosine transform</subject><subject>Dynamic testing</subject><subject>Dynamic tests</subject><subject>Error correction</subject><subject>Heterogeneity</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Monte Carlo method</subject><subject>Offshore</subject><subject>Probability theory</subject><subject>Procedures</subject><subject>Sediments</subject><subject>Sediments (Geology)</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stochasticity</subject><subject>Strain rate</subject><subject>Testing</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVkk2LFDEQhoMoOK4evQc9eei18tndx3FYdWFR0RW8hZp00puhpzObZMD592ZQ0IW-SB2qKJ6q4i1eQl4yuGRM9G_tuGs4cN6AYOwRWTEOXaOBwWOyAqi10K18Sp7lvANgUnK-Ij_W9JDiFrdhCrkES9_hyeWAM927cheHOMXxRH1MtNw5mkvCMDcJi6M2puRsCXGm0dPhNOO-jm--3B7pgAWfkycep-xe_MkX5Pv7q9vNx-bm84frzfqmsQpkaTRrFZcCW8EEAwfcimErZQvaaq0GBFRtJ3sFHmVvee-lsFutul55MWiJ4oK8_r23yrg_ulzMLh7TXE8a3kHbKdlx9ZcacXImzD5WJXYfsjXrVvagew1QqWaBGt3sEk5xdj7U9gP-1QJvD-He_AtdLkA1Blcftrj1zYOByhT3s4x4zNlcf_v6H-ynRXU2xZyT8-aQwh7TyTAwZwOZaiBzNpA5G0j8AjXjsm0</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Collico, Stefano</creator><creator>Arroyo, Marcos</creator><creator>Kopf, Achim</creator><creator>Devincenzi, Marcelo</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-9384-9107</orcidid><orcidid>https://orcid.org/0000-0003-2834-9813</orcidid></search><sort><creationdate>20230501</creationdate><title>A probabilistic Bayesian methodology for the strain-rate correction of dynamic CPTu data</title><author>Collico, Stefano ; Arroyo, Marcos ; Kopf, Achim ; Devincenzi, Marcelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-6175243a731310e02c3db44706c665da0a5784950fa49c29f43cb65895f3d64a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Cone penetration tests</topic><topic>Conversion</topic><topic>Data acquisition</topic><topic>Discrete cosine transform</topic><topic>Dynamic testing</topic><topic>Dynamic tests</topic><topic>Error correction</topic><topic>Heterogeneity</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Monte Carlo method</topic><topic>Offshore</topic><topic>Probability theory</topic><topic>Procedures</topic><topic>Sediments</topic><topic>Sediments (Geology)</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stochasticity</topic><topic>Strain rate</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collico, Stefano</creatorcontrib><creatorcontrib>Arroyo, Marcos</creatorcontrib><creatorcontrib>Kopf, Achim</creatorcontrib><creatorcontrib>Devincenzi, Marcelo</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collico, Stefano</au><au>Arroyo, Marcos</au><au>Kopf, Achim</au><au>Devincenzi, Marcelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A probabilistic Bayesian methodology for the strain-rate correction of dynamic CPTu data</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>60</volume><issue>5</issue><spage>669</spage><epage>686</epage><pages>669-686</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><abstract>Dynamic Cone Penetration Test (CPTu) profile offshore sediments by impact penetration. To exploit their results in full, the measured data are converted to obtain a quasi-static equivalent profile. Dynamic CPTu conversion requires calibrated correction models. Calibration is currently done by using paired (i.e., very close) quasi-static and dynamic tests. It is shown here that paired test data, which may be inconvenient to acquire offshore, are not strictly necessary to convert dynamic CPTu data. A new probabilistic methodology is proposed to call upon quasi-static results from a much wider area in the conversion procedure. Those results feed the prior distribution of a converted profile, within a Bayesian updating scheme where strain-rate coefficient and correction model error are also described by updated stochastic variables. The updating scheme is solved numerically using the Transitional Markov Chain Monte Carlo sampling algorithm. To avoid undue influence of local profile heterogeneity, the statistic treatment of the quasi-static CPTu data takes place in the frequency domain, using a discrete cosine transform. The new procedure is applied to a CPTu campaign offshore Nice (France): dynamic tests are converted with equal precision using quasi-static data acquired at distances orders of magnitude larger than what was previously employed.</abstract><cop>Ottawa</cop><pub>NRC Research Press</pub><doi>10.1139/cgj-2022-0311</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9384-9107</orcidid><orcidid>https://orcid.org/0000-0003-2834-9813</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-3674 |
ispartof | Canadian geotechnical journal, 2023-05, Vol.60 (5), p.669-686 |
issn | 0008-3674 1208-6010 |
language | eng |
recordid | cdi_proquest_journals_2807854825 |
source | NRC Research Press; Alma/SFX Local Collection |
subjects | Algorithms Bayesian analysis Bayesian theory Cone penetration tests Conversion Data acquisition Discrete cosine transform Dynamic testing Dynamic tests Error correction Heterogeneity Markov chains Markov processes Mathematical models Mechanical properties Methods Monte Carlo method Offshore Probability theory Procedures Sediments Sediments (Geology) Statistical analysis Statistical methods Stochasticity Strain rate Testing |
title | A probabilistic Bayesian methodology for the strain-rate correction of dynamic CPTu data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20probabilistic%20Bayesian%20methodology%20for%20the%20strain-rate%20correction%20of%20dynamic%20CPTu%20data&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Collico,%20Stefano&rft.date=2023-05-01&rft.volume=60&rft.issue=5&rft.spage=669&rft.epage=686&rft.pages=669-686&rft.issn=0008-3674&rft.eissn=1208-6010&rft_id=info:doi/10.1139/cgj-2022-0311&rft_dat=%3Cgale_proqu%3EA749069600%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807854825&rft_id=info:pmid/&rft_galeid=A749069600&rfr_iscdi=true |