A probabilistic Bayesian methodology for the strain-rate correction of dynamic CPTu data

Dynamic Cone Penetration Test (CPTu) profile offshore sediments by impact penetration. To exploit their results in full, the measured data are converted to obtain a quasi-static equivalent profile. Dynamic CPTu conversion requires calibrated correction models. Calibration is currently done by using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian geotechnical journal 2023-05, Vol.60 (5), p.669-686
Hauptverfasser: Collico, Stefano, Arroyo, Marcos, Kopf, Achim, Devincenzi, Marcelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 686
container_issue 5
container_start_page 669
container_title Canadian geotechnical journal
container_volume 60
creator Collico, Stefano
Arroyo, Marcos
Kopf, Achim
Devincenzi, Marcelo
description Dynamic Cone Penetration Test (CPTu) profile offshore sediments by impact penetration. To exploit their results in full, the measured data are converted to obtain a quasi-static equivalent profile. Dynamic CPTu conversion requires calibrated correction models. Calibration is currently done by using paired (i.e., very close) quasi-static and dynamic tests. It is shown here that paired test data, which may be inconvenient to acquire offshore, are not strictly necessary to convert dynamic CPTu data. A new probabilistic methodology is proposed to call upon quasi-static results from a much wider area in the conversion procedure. Those results feed the prior distribution of a converted profile, within a Bayesian updating scheme where strain-rate coefficient and correction model error are also described by updated stochastic variables. The updating scheme is solved numerically using the Transitional Markov Chain Monte Carlo sampling algorithm. To avoid undue influence of local profile heterogeneity, the statistic treatment of the quasi-static CPTu data takes place in the frequency domain, using a discrete cosine transform. The new procedure is applied to a CPTu campaign offshore Nice (France): dynamic tests are converted with equal precision using quasi-static data acquired at distances orders of magnitude larger than what was previously employed.
doi_str_mv 10.1139/cgj-2022-0311
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2807854825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749069600</galeid><sourcerecordid>A749069600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-6175243a731310e02c3db44706c665da0a5784950fa49c29f43cb65895f3d64a3</originalsourceid><addsrcrecordid>eNqVkk2LFDEQhoMoOK4evQc9eei18tndx3FYdWFR0RW8hZp00puhpzObZMD592ZQ0IW-SB2qKJ6q4i1eQl4yuGRM9G_tuGs4cN6AYOwRWTEOXaOBwWOyAqi10K18Sp7lvANgUnK-Ij_W9JDiFrdhCrkES9_hyeWAM927cheHOMXxRH1MtNw5mkvCMDcJi6M2puRsCXGm0dPhNOO-jm--3B7pgAWfkycep-xe_MkX5Pv7q9vNx-bm84frzfqmsQpkaTRrFZcCW8EEAwfcimErZQvaaq0GBFRtJ3sFHmVvee-lsFutul55MWiJ4oK8_r23yrg_ulzMLh7TXE8a3kHbKdlx9ZcacXImzD5WJXYfsjXrVvagew1QqWaBGt3sEk5xdj7U9gP-1QJvD-He_AtdLkA1Blcftrj1zYOByhT3s4x4zNlcf_v6H-ynRXU2xZyT8-aQwh7TyTAwZwOZaiBzNpA5G0j8AjXjsm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807854825</pqid></control><display><type>article</type><title>A probabilistic Bayesian methodology for the strain-rate correction of dynamic CPTu data</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>Collico, Stefano ; Arroyo, Marcos ; Kopf, Achim ; Devincenzi, Marcelo</creator><creatorcontrib>Collico, Stefano ; Arroyo, Marcos ; Kopf, Achim ; Devincenzi, Marcelo</creatorcontrib><description>Dynamic Cone Penetration Test (CPTu) profile offshore sediments by impact penetration. To exploit their results in full, the measured data are converted to obtain a quasi-static equivalent profile. Dynamic CPTu conversion requires calibrated correction models. Calibration is currently done by using paired (i.e., very close) quasi-static and dynamic tests. It is shown here that paired test data, which may be inconvenient to acquire offshore, are not strictly necessary to convert dynamic CPTu data. A new probabilistic methodology is proposed to call upon quasi-static results from a much wider area in the conversion procedure. Those results feed the prior distribution of a converted profile, within a Bayesian updating scheme where strain-rate coefficient and correction model error are also described by updated stochastic variables. The updating scheme is solved numerically using the Transitional Markov Chain Monte Carlo sampling algorithm. To avoid undue influence of local profile heterogeneity, the statistic treatment of the quasi-static CPTu data takes place in the frequency domain, using a discrete cosine transform. The new procedure is applied to a CPTu campaign offshore Nice (France): dynamic tests are converted with equal precision using quasi-static data acquired at distances orders of magnitude larger than what was previously employed.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/cgj-2022-0311</identifier><language>eng</language><publisher>Ottawa: NRC Research Press</publisher><subject>Algorithms ; Bayesian analysis ; Bayesian theory ; Cone penetration tests ; Conversion ; Data acquisition ; Discrete cosine transform ; Dynamic testing ; Dynamic tests ; Error correction ; Heterogeneity ; Markov chains ; Markov processes ; Mathematical models ; Mechanical properties ; Methods ; Monte Carlo method ; Offshore ; Probability theory ; Procedures ; Sediments ; Sediments (Geology) ; Statistical analysis ; Statistical methods ; Stochasticity ; Strain rate ; Testing</subject><ispartof>Canadian geotechnical journal, 2023-05, Vol.60 (5), p.669-686</ispartof><rights>COPYRIGHT 2023 NRC Research Press</rights><rights>2022 Published by NRC Research Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-6175243a731310e02c3db44706c665da0a5784950fa49c29f43cb65895f3d64a3</citedby><cites>FETCH-LOGICAL-c504t-6175243a731310e02c3db44706c665da0a5784950fa49c29f43cb65895f3d64a3</cites><orcidid>0000-0001-9384-9107 ; 0000-0003-2834-9813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Collico, Stefano</creatorcontrib><creatorcontrib>Arroyo, Marcos</creatorcontrib><creatorcontrib>Kopf, Achim</creatorcontrib><creatorcontrib>Devincenzi, Marcelo</creatorcontrib><title>A probabilistic Bayesian methodology for the strain-rate correction of dynamic CPTu data</title><title>Canadian geotechnical journal</title><description>Dynamic Cone Penetration Test (CPTu) profile offshore sediments by impact penetration. To exploit their results in full, the measured data are converted to obtain a quasi-static equivalent profile. Dynamic CPTu conversion requires calibrated correction models. Calibration is currently done by using paired (i.e., very close) quasi-static and dynamic tests. It is shown here that paired test data, which may be inconvenient to acquire offshore, are not strictly necessary to convert dynamic CPTu data. A new probabilistic methodology is proposed to call upon quasi-static results from a much wider area in the conversion procedure. Those results feed the prior distribution of a converted profile, within a Bayesian updating scheme where strain-rate coefficient and correction model error are also described by updated stochastic variables. The updating scheme is solved numerically using the Transitional Markov Chain Monte Carlo sampling algorithm. To avoid undue influence of local profile heterogeneity, the statistic treatment of the quasi-static CPTu data takes place in the frequency domain, using a discrete cosine transform. The new procedure is applied to a CPTu campaign offshore Nice (France): dynamic tests are converted with equal precision using quasi-static data acquired at distances orders of magnitude larger than what was previously employed.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Cone penetration tests</subject><subject>Conversion</subject><subject>Data acquisition</subject><subject>Discrete cosine transform</subject><subject>Dynamic testing</subject><subject>Dynamic tests</subject><subject>Error correction</subject><subject>Heterogeneity</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Monte Carlo method</subject><subject>Offshore</subject><subject>Probability theory</subject><subject>Procedures</subject><subject>Sediments</subject><subject>Sediments (Geology)</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stochasticity</subject><subject>Strain rate</subject><subject>Testing</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVkk2LFDEQhoMoOK4evQc9eei18tndx3FYdWFR0RW8hZp00puhpzObZMD592ZQ0IW-SB2qKJ6q4i1eQl4yuGRM9G_tuGs4cN6AYOwRWTEOXaOBwWOyAqi10K18Sp7lvANgUnK-Ij_W9JDiFrdhCrkES9_hyeWAM927cheHOMXxRH1MtNw5mkvCMDcJi6M2puRsCXGm0dPhNOO-jm--3B7pgAWfkycep-xe_MkX5Pv7q9vNx-bm84frzfqmsQpkaTRrFZcCW8EEAwfcimErZQvaaq0GBFRtJ3sFHmVvee-lsFutul55MWiJ4oK8_r23yrg_ulzMLh7TXE8a3kHbKdlx9ZcacXImzD5WJXYfsjXrVvagew1QqWaBGt3sEk5xdj7U9gP-1QJvD-He_AtdLkA1Blcftrj1zYOByhT3s4x4zNlcf_v6H-ynRXU2xZyT8-aQwh7TyTAwZwOZaiBzNpA5G0j8AjXjsm0</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Collico, Stefano</creator><creator>Arroyo, Marcos</creator><creator>Kopf, Achim</creator><creator>Devincenzi, Marcelo</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-9384-9107</orcidid><orcidid>https://orcid.org/0000-0003-2834-9813</orcidid></search><sort><creationdate>20230501</creationdate><title>A probabilistic Bayesian methodology for the strain-rate correction of dynamic CPTu data</title><author>Collico, Stefano ; Arroyo, Marcos ; Kopf, Achim ; Devincenzi, Marcelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-6175243a731310e02c3db44706c665da0a5784950fa49c29f43cb65895f3d64a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Cone penetration tests</topic><topic>Conversion</topic><topic>Data acquisition</topic><topic>Discrete cosine transform</topic><topic>Dynamic testing</topic><topic>Dynamic tests</topic><topic>Error correction</topic><topic>Heterogeneity</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Monte Carlo method</topic><topic>Offshore</topic><topic>Probability theory</topic><topic>Procedures</topic><topic>Sediments</topic><topic>Sediments (Geology)</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stochasticity</topic><topic>Strain rate</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collico, Stefano</creatorcontrib><creatorcontrib>Arroyo, Marcos</creatorcontrib><creatorcontrib>Kopf, Achim</creatorcontrib><creatorcontrib>Devincenzi, Marcelo</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collico, Stefano</au><au>Arroyo, Marcos</au><au>Kopf, Achim</au><au>Devincenzi, Marcelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A probabilistic Bayesian methodology for the strain-rate correction of dynamic CPTu data</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>60</volume><issue>5</issue><spage>669</spage><epage>686</epage><pages>669-686</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><abstract>Dynamic Cone Penetration Test (CPTu) profile offshore sediments by impact penetration. To exploit their results in full, the measured data are converted to obtain a quasi-static equivalent profile. Dynamic CPTu conversion requires calibrated correction models. Calibration is currently done by using paired (i.e., very close) quasi-static and dynamic tests. It is shown here that paired test data, which may be inconvenient to acquire offshore, are not strictly necessary to convert dynamic CPTu data. A new probabilistic methodology is proposed to call upon quasi-static results from a much wider area in the conversion procedure. Those results feed the prior distribution of a converted profile, within a Bayesian updating scheme where strain-rate coefficient and correction model error are also described by updated stochastic variables. The updating scheme is solved numerically using the Transitional Markov Chain Monte Carlo sampling algorithm. To avoid undue influence of local profile heterogeneity, the statistic treatment of the quasi-static CPTu data takes place in the frequency domain, using a discrete cosine transform. The new procedure is applied to a CPTu campaign offshore Nice (France): dynamic tests are converted with equal precision using quasi-static data acquired at distances orders of magnitude larger than what was previously employed.</abstract><cop>Ottawa</cop><pub>NRC Research Press</pub><doi>10.1139/cgj-2022-0311</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9384-9107</orcidid><orcidid>https://orcid.org/0000-0003-2834-9813</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-3674
ispartof Canadian geotechnical journal, 2023-05, Vol.60 (5), p.669-686
issn 0008-3674
1208-6010
language eng
recordid cdi_proquest_journals_2807854825
source NRC Research Press; Alma/SFX Local Collection
subjects Algorithms
Bayesian analysis
Bayesian theory
Cone penetration tests
Conversion
Data acquisition
Discrete cosine transform
Dynamic testing
Dynamic tests
Error correction
Heterogeneity
Markov chains
Markov processes
Mathematical models
Mechanical properties
Methods
Monte Carlo method
Offshore
Probability theory
Procedures
Sediments
Sediments (Geology)
Statistical analysis
Statistical methods
Stochasticity
Strain rate
Testing
title A probabilistic Bayesian methodology for the strain-rate correction of dynamic CPTu data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20probabilistic%20Bayesian%20methodology%20for%20the%20strain-rate%20correction%20of%20dynamic%20CPTu%20data&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Collico,%20Stefano&rft.date=2023-05-01&rft.volume=60&rft.issue=5&rft.spage=669&rft.epage=686&rft.pages=669-686&rft.issn=0008-3674&rft.eissn=1208-6010&rft_id=info:doi/10.1139/cgj-2022-0311&rft_dat=%3Cgale_proqu%3EA749069600%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807854825&rft_id=info:pmid/&rft_galeid=A749069600&rfr_iscdi=true