A Higher-Order Improved Runge–Kutta Method and Cubic B-Spline Approximation for the One-Dimensional Nonlinear RLW Equation
This article developed a significant improvement of a Galerkin-type approximation to the regularized long-wave equation (RLW) solution under homogeneous Dirichlet boundary conditions for achieving higher accuracy in time variables. First, a basis derived from cubic B-splines and limit conditions is...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2023-01, Vol.2023 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Mathematical problems in engineering |
container_volume | 2023 |
creator | Redouane, Kelthoum Lina Arar, Nouria Ben Makhlouf, Abdellatif Alhashash, Abeer |
description | This article developed a significant improvement of a Galerkin-type approximation to the regularized long-wave equation (RLW) solution under homogeneous Dirichlet boundary conditions for achieving higher accuracy in time variables. First, a basis derived from cubic B-splines and limit conditions is used to perform a Galerkin-type approximation. Then, a Crank–Nicolson and fourth-order 4-stage improved Runge–Kutta scheme (IRK4) is used to discretize time. Both a strong stability analysis of a fully discrete IRK4 scheme and the evaluation of Von Neumann stability of the proposed Crank–Nicolson technique are examined. We demonstrate the efficiency of our method with two test problems. The analytical and numerical solutions found in the literature are then contrasted with the approximate solutions produced by the suggested method. The validated numerical results illustrate that the provided technique is more efficient and converges faster than earlier research, resulting in less computational time, smaller space dimensions, and storage. As a result, the proposed numerical approach is appealing for approximating PDEs whose explicit solution is unknown for a variety of boundary conditions. |
doi_str_mv | 10.1155/2023/4753873 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807762802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807762802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1393-318a17782ef0ec03c323e6987905c580acafe60aeeaf1dbe5cebe5a33123abd53</originalsourceid><addsrcrecordid>eNp9kM9OAjEQxhujiYjefIAmHrXSP5RdjogoRJQENXrblO4sWwPdpd31T-LBd_ANfRKLcPYyM5n8ZvJ9H0LHjJ4zJmWLUy5a7UiKOBI7qMFkRxDJ2tFumClvE8bF8z468P6FUs4kixvos4eHZp6DIxOXgsOjZemKV0jxtLZz-Pn6vqmrSuFbqPIixcqmuF_PjMYX5L5cGAu4V4aDd7NUlSkszgqHqxzwxAK5NEuwPmzVAt8Vdk0rh6fjJzxY1X_4IdrL1MLD0bY30ePV4KE_JOPJ9ajfGxPNRFcQwWLFoijmkFHQVGjBBXS6cdSlUsuYKq0y6FAFoDKWzkBqCEUJEfyqWSpFE51s_gapqxp8lbwUtQu6fMJjGkWdUHmgzjaUdoX3DrKkdMGX-0gYTdb5Jut8k22-AT_d4LmxqXoz_9O_L5t7nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807762802</pqid></control><display><type>article</type><title>A Higher-Order Improved Runge–Kutta Method and Cubic B-Spline Approximation for the One-Dimensional Nonlinear RLW Equation</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Redouane, Kelthoum Lina ; Arar, Nouria ; Ben Makhlouf, Abdellatif ; Alhashash, Abeer</creator><contributor>Khader, Meabed ; Meabed Khader</contributor><creatorcontrib>Redouane, Kelthoum Lina ; Arar, Nouria ; Ben Makhlouf, Abdellatif ; Alhashash, Abeer ; Khader, Meabed ; Meabed Khader</creatorcontrib><description>This article developed a significant improvement of a Galerkin-type approximation to the regularized long-wave equation (RLW) solution under homogeneous Dirichlet boundary conditions for achieving higher accuracy in time variables. First, a basis derived from cubic B-splines and limit conditions is used to perform a Galerkin-type approximation. Then, a Crank–Nicolson and fourth-order 4-stage improved Runge–Kutta scheme (IRK4) is used to discretize time. Both a strong stability analysis of a fully discrete IRK4 scheme and the evaluation of Von Neumann stability of the proposed Crank–Nicolson technique are examined. We demonstrate the efficiency of our method with two test problems. The analytical and numerical solutions found in the literature are then contrasted with the approximate solutions produced by the suggested method. The validated numerical results illustrate that the provided technique is more efficient and converges faster than earlier research, resulting in less computational time, smaller space dimensions, and storage. As a result, the proposed numerical approach is appealing for approximating PDEs whose explicit solution is unknown for a variety of boundary conditions.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2023/4753873</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Approximation ; Boundary conditions ; Computing time ; Decomposition ; Dirichlet problem ; Galerkin method ; Partial differential equations ; Runge-Kutta method ; Stability analysis ; Wave equations</subject><ispartof>Mathematical problems in engineering, 2023-01, Vol.2023 (1)</ispartof><rights>Copyright © 2023 Kelthoum Lina Redouane et al.</rights><rights>Copyright © 2023 Kelthoum Lina Redouane et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1393-318a17782ef0ec03c323e6987905c580acafe60aeeaf1dbe5cebe5a33123abd53</cites><orcidid>0000-0003-0069-0315 ; 0000-0002-6051-8237 ; 0000-0001-7142-7026 ; 0000-0002-6667-7343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Khader, Meabed</contributor><contributor>Meabed Khader</contributor><creatorcontrib>Redouane, Kelthoum Lina</creatorcontrib><creatorcontrib>Arar, Nouria</creatorcontrib><creatorcontrib>Ben Makhlouf, Abdellatif</creatorcontrib><creatorcontrib>Alhashash, Abeer</creatorcontrib><title>A Higher-Order Improved Runge–Kutta Method and Cubic B-Spline Approximation for the One-Dimensional Nonlinear RLW Equation</title><title>Mathematical problems in engineering</title><description>This article developed a significant improvement of a Galerkin-type approximation to the regularized long-wave equation (RLW) solution under homogeneous Dirichlet boundary conditions for achieving higher accuracy in time variables. First, a basis derived from cubic B-splines and limit conditions is used to perform a Galerkin-type approximation. Then, a Crank–Nicolson and fourth-order 4-stage improved Runge–Kutta scheme (IRK4) is used to discretize time. Both a strong stability analysis of a fully discrete IRK4 scheme and the evaluation of Von Neumann stability of the proposed Crank–Nicolson technique are examined. We demonstrate the efficiency of our method with two test problems. The analytical and numerical solutions found in the literature are then contrasted with the approximate solutions produced by the suggested method. The validated numerical results illustrate that the provided technique is more efficient and converges faster than earlier research, resulting in less computational time, smaller space dimensions, and storage. As a result, the proposed numerical approach is appealing for approximating PDEs whose explicit solution is unknown for a variety of boundary conditions.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Computing time</subject><subject>Decomposition</subject><subject>Dirichlet problem</subject><subject>Galerkin method</subject><subject>Partial differential equations</subject><subject>Runge-Kutta method</subject><subject>Stability analysis</subject><subject>Wave equations</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9OAjEQxhujiYjefIAmHrXSP5RdjogoRJQENXrblO4sWwPdpd31T-LBd_ANfRKLcPYyM5n8ZvJ9H0LHjJ4zJmWLUy5a7UiKOBI7qMFkRxDJ2tFumClvE8bF8z468P6FUs4kixvos4eHZp6DIxOXgsOjZemKV0jxtLZz-Pn6vqmrSuFbqPIixcqmuF_PjMYX5L5cGAu4V4aDd7NUlSkszgqHqxzwxAK5NEuwPmzVAt8Vdk0rh6fjJzxY1X_4IdrL1MLD0bY30ePV4KE_JOPJ9ajfGxPNRFcQwWLFoijmkFHQVGjBBXS6cdSlUsuYKq0y6FAFoDKWzkBqCEUJEfyqWSpFE51s_gapqxp8lbwUtQu6fMJjGkWdUHmgzjaUdoX3DrKkdMGX-0gYTdb5Jut8k22-AT_d4LmxqXoz_9O_L5t7nw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Redouane, Kelthoum Lina</creator><creator>Arar, Nouria</creator><creator>Ben Makhlouf, Abdellatif</creator><creator>Alhashash, Abeer</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0069-0315</orcidid><orcidid>https://orcid.org/0000-0002-6051-8237</orcidid><orcidid>https://orcid.org/0000-0001-7142-7026</orcidid><orcidid>https://orcid.org/0000-0002-6667-7343</orcidid></search><sort><creationdate>20230101</creationdate><title>A Higher-Order Improved Runge–Kutta Method and Cubic B-Spline Approximation for the One-Dimensional Nonlinear RLW Equation</title><author>Redouane, Kelthoum Lina ; Arar, Nouria ; Ben Makhlouf, Abdellatif ; Alhashash, Abeer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1393-318a17782ef0ec03c323e6987905c580acafe60aeeaf1dbe5cebe5a33123abd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Computing time</topic><topic>Decomposition</topic><topic>Dirichlet problem</topic><topic>Galerkin method</topic><topic>Partial differential equations</topic><topic>Runge-Kutta method</topic><topic>Stability analysis</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Redouane, Kelthoum Lina</creatorcontrib><creatorcontrib>Arar, Nouria</creatorcontrib><creatorcontrib>Ben Makhlouf, Abdellatif</creatorcontrib><creatorcontrib>Alhashash, Abeer</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Redouane, Kelthoum Lina</au><au>Arar, Nouria</au><au>Ben Makhlouf, Abdellatif</au><au>Alhashash, Abeer</au><au>Khader, Meabed</au><au>Meabed Khader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Higher-Order Improved Runge–Kutta Method and Cubic B-Spline Approximation for the One-Dimensional Nonlinear RLW Equation</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This article developed a significant improvement of a Galerkin-type approximation to the regularized long-wave equation (RLW) solution under homogeneous Dirichlet boundary conditions for achieving higher accuracy in time variables. First, a basis derived from cubic B-splines and limit conditions is used to perform a Galerkin-type approximation. Then, a Crank–Nicolson and fourth-order 4-stage improved Runge–Kutta scheme (IRK4) is used to discretize time. Both a strong stability analysis of a fully discrete IRK4 scheme and the evaluation of Von Neumann stability of the proposed Crank–Nicolson technique are examined. We demonstrate the efficiency of our method with two test problems. The analytical and numerical solutions found in the literature are then contrasted with the approximate solutions produced by the suggested method. The validated numerical results illustrate that the provided technique is more efficient and converges faster than earlier research, resulting in less computational time, smaller space dimensions, and storage. As a result, the proposed numerical approach is appealing for approximating PDEs whose explicit solution is unknown for a variety of boundary conditions.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/4753873</doi><orcidid>https://orcid.org/0000-0003-0069-0315</orcidid><orcidid>https://orcid.org/0000-0002-6051-8237</orcidid><orcidid>https://orcid.org/0000-0001-7142-7026</orcidid><orcidid>https://orcid.org/0000-0002-6667-7343</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2023-01, Vol.2023 (1) |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2807762802 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Approximation Boundary conditions Computing time Decomposition Dirichlet problem Galerkin method Partial differential equations Runge-Kutta method Stability analysis Wave equations |
title | A Higher-Order Improved Runge–Kutta Method and Cubic B-Spline Approximation for the One-Dimensional Nonlinear RLW Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Higher-Order%20Improved%20Runge%E2%80%93Kutta%20Method%20and%20Cubic%20B-Spline%20Approximation%20for%20the%20One-Dimensional%20Nonlinear%20RLW%20Equation&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Redouane,%20Kelthoum%20Lina&rft.date=2023-01-01&rft.volume=2023&rft.issue=1&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2023/4753873&rft_dat=%3Cproquest_cross%3E2807762802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807762802&rft_id=info:pmid/&rfr_iscdi=true |