Multisensor Intelligent Fall Perception Algorithm considering Precise Classification of Human Behavior Characteristics

In order to improve the accuracy and efficiency of human motion perception, a multisensor intelligent fall perception algorithm considering the precise classification of human behavior characteristics is proposed. Multisensor devices (smart watches, smart phones) collect data such as acceleration an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2023-04, Vol.2023 (1)
1. Verfasser: Ding, Yafei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of sensors
container_volume 2023
creator Ding, Yafei
description In order to improve the accuracy and efficiency of human motion perception, a multisensor intelligent fall perception algorithm considering the precise classification of human behavior characteristics is proposed. Multisensor devices (smart watches, smart phones) collect data such as acceleration and heart rate of the human body to obtain human behavior data. On the basis of human behavior data collection, the acceleration characteristics of a falling state are extracted, and the SVM method is used to classify human behavior characteristics. Cuckoo search is used to optimize the width of the SVM kernel and improve the accuracy of human behavior recognition. Finally, based on the behavior recognition results, the intelligent perception of human falling behavior is realized through the exercise preparation potential. The experimental results show that the perceptual accuracy of this method is high, which has reached 90%, and the perception efficiency is higher. The minimum perception time is only 0.56 s, which fully verifies the effectiveness of this method. It can be widely used in human-computer interaction, machine vision, and other fields.
doi_str_mv 10.1155/2023/3132863
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807762517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807762517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9ca5d01616428dcd3fc409d3d268d0a2ce42967bc53bd2a6ecf5bbfecf34f45c3</originalsourceid><addsrcrecordid>eNp9kD1PwzAYhC0EEqWw8QMsMUKoPxInGUtEaSUQHUBiixx_NK5Sp9hOEf8el1aMTHfDc_fqPQCuMbrHOMsmBBE6oZiSgtETMMKsyJOcsOL0z2cf5-DC-zVCjOaUjsDuZeiC8cr63sGFDarrzErZAGe86-BSOaG2wfQWTrtV70xoN1D01hupnLEruHRKxDSsOu690UbwX7jXcD5suIUPquU7E6urljsuQkz5YIS_BGead15dHXUM3mePb9U8eX59WlTT50SQEoekFDyTCDPMUlJIIakWKSollfEpiTgRKiUlyxuR0UYSzpTQWdPoKDTVaSboGNwcereu_xyUD_W6H5yNJ2tSoDxnJMN5pO4OlHC9907peuvMhrvvGqN6v2y9X7Y-Lhvx2wPeGiv5l_mf_gEBHXtb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807762517</pqid></control><display><type>article</type><title>Multisensor Intelligent Fall Perception Algorithm considering Precise Classification of Human Behavior Characteristics</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Ding, Yafei</creator><contributor>Mittal, Mohit ; Mohit Mittal</contributor><creatorcontrib>Ding, Yafei ; Mittal, Mohit ; Mohit Mittal</creatorcontrib><description>In order to improve the accuracy and efficiency of human motion perception, a multisensor intelligent fall perception algorithm considering the precise classification of human behavior characteristics is proposed. Multisensor devices (smart watches, smart phones) collect data such as acceleration and heart rate of the human body to obtain human behavior data. On the basis of human behavior data collection, the acceleration characteristics of a falling state are extracted, and the SVM method is used to classify human behavior characteristics. Cuckoo search is used to optimize the width of the SVM kernel and improve the accuracy of human behavior recognition. Finally, based on the behavior recognition results, the intelligent perception of human falling behavior is realized through the exercise preparation potential. The experimental results show that the perceptual accuracy of this method is high, which has reached 90%, and the perception efficiency is higher. The minimum perception time is only 0.56 s, which fully verifies the effectiveness of this method. It can be widely used in human-computer interaction, machine vision, and other fields.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2023/3132863</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Classification ; Computers ; Data analysis ; Data collection ; Datasets ; Deep learning ; Heart rate ; Human behavior ; Human motion ; Human-computer interaction ; Internet of Things ; Machine vision ; Motion perception ; Neural networks ; Recognition ; Retina ; Sensors ; Smartphones ; Smartwatches ; Support vector machines ; Wavelet transforms</subject><ispartof>Journal of sensors, 2023-04, Vol.2023 (1)</ispartof><rights>Copyright © 2023 Yafei Ding.</rights><rights>Copyright © 2023 Yafei Ding. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-9ca5d01616428dcd3fc409d3d268d0a2ce42967bc53bd2a6ecf5bbfecf34f45c3</cites><orcidid>0009-0005-7193-5908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Mittal, Mohit</contributor><contributor>Mohit Mittal</contributor><creatorcontrib>Ding, Yafei</creatorcontrib><title>Multisensor Intelligent Fall Perception Algorithm considering Precise Classification of Human Behavior Characteristics</title><title>Journal of sensors</title><description>In order to improve the accuracy and efficiency of human motion perception, a multisensor intelligent fall perception algorithm considering the precise classification of human behavior characteristics is proposed. Multisensor devices (smart watches, smart phones) collect data such as acceleration and heart rate of the human body to obtain human behavior data. On the basis of human behavior data collection, the acceleration characteristics of a falling state are extracted, and the SVM method is used to classify human behavior characteristics. Cuckoo search is used to optimize the width of the SVM kernel and improve the accuracy of human behavior recognition. Finally, based on the behavior recognition results, the intelligent perception of human falling behavior is realized through the exercise preparation potential. The experimental results show that the perceptual accuracy of this method is high, which has reached 90%, and the perception efficiency is higher. The minimum perception time is only 0.56 s, which fully verifies the effectiveness of this method. It can be widely used in human-computer interaction, machine vision, and other fields.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Computers</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Heart rate</subject><subject>Human behavior</subject><subject>Human motion</subject><subject>Human-computer interaction</subject><subject>Internet of Things</subject><subject>Machine vision</subject><subject>Motion perception</subject><subject>Neural networks</subject><subject>Recognition</subject><subject>Retina</subject><subject>Sensors</subject><subject>Smartphones</subject><subject>Smartwatches</subject><subject>Support vector machines</subject><subject>Wavelet transforms</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAYhC0EEqWw8QMsMUKoPxInGUtEaSUQHUBiixx_NK5Sp9hOEf8el1aMTHfDc_fqPQCuMbrHOMsmBBE6oZiSgtETMMKsyJOcsOL0z2cf5-DC-zVCjOaUjsDuZeiC8cr63sGFDarrzErZAGe86-BSOaG2wfQWTrtV70xoN1D01hupnLEruHRKxDSsOu690UbwX7jXcD5suIUPquU7E6urljsuQkz5YIS_BGead15dHXUM3mePb9U8eX59WlTT50SQEoekFDyTCDPMUlJIIakWKSollfEpiTgRKiUlyxuR0UYSzpTQWdPoKDTVaSboGNwcereu_xyUD_W6H5yNJ2tSoDxnJMN5pO4OlHC9907peuvMhrvvGqN6v2y9X7Y-Lhvx2wPeGiv5l_mf_gEBHXtb</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Ding, Yafei</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0005-7193-5908</orcidid></search><sort><creationdate>20230421</creationdate><title>Multisensor Intelligent Fall Perception Algorithm considering Precise Classification of Human Behavior Characteristics</title><author>Ding, Yafei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9ca5d01616428dcd3fc409d3d268d0a2ce42967bc53bd2a6ecf5bbfecf34f45c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Computers</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Heart rate</topic><topic>Human behavior</topic><topic>Human motion</topic><topic>Human-computer interaction</topic><topic>Internet of Things</topic><topic>Machine vision</topic><topic>Motion perception</topic><topic>Neural networks</topic><topic>Recognition</topic><topic>Retina</topic><topic>Sensors</topic><topic>Smartphones</topic><topic>Smartwatches</topic><topic>Support vector machines</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yafei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yafei</au><au>Mittal, Mohit</au><au>Mohit Mittal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multisensor Intelligent Fall Perception Algorithm considering Precise Classification of Human Behavior Characteristics</atitle><jtitle>Journal of sensors</jtitle><date>2023-04-21</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>In order to improve the accuracy and efficiency of human motion perception, a multisensor intelligent fall perception algorithm considering the precise classification of human behavior characteristics is proposed. Multisensor devices (smart watches, smart phones) collect data such as acceleration and heart rate of the human body to obtain human behavior data. On the basis of human behavior data collection, the acceleration characteristics of a falling state are extracted, and the SVM method is used to classify human behavior characteristics. Cuckoo search is used to optimize the width of the SVM kernel and improve the accuracy of human behavior recognition. Finally, based on the behavior recognition results, the intelligent perception of human falling behavior is realized through the exercise preparation potential. The experimental results show that the perceptual accuracy of this method is high, which has reached 90%, and the perception efficiency is higher. The minimum perception time is only 0.56 s, which fully verifies the effectiveness of this method. It can be widely used in human-computer interaction, machine vision, and other fields.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/3132863</doi><orcidid>https://orcid.org/0009-0005-7193-5908</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2023-04, Vol.2023 (1)
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_journals_2807762517
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Accuracy
Algorithms
Classification
Computers
Data analysis
Data collection
Datasets
Deep learning
Heart rate
Human behavior
Human motion
Human-computer interaction
Internet of Things
Machine vision
Motion perception
Neural networks
Recognition
Retina
Sensors
Smartphones
Smartwatches
Support vector machines
Wavelet transforms
title Multisensor Intelligent Fall Perception Algorithm considering Precise Classification of Human Behavior Characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A06%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multisensor%20Intelligent%20Fall%20Perception%20Algorithm%20considering%20Precise%20Classification%20of%20Human%20Behavior%20Characteristics&rft.jtitle=Journal%20of%20sensors&rft.au=Ding,%20Yafei&rft.date=2023-04-21&rft.volume=2023&rft.issue=1&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2023/3132863&rft_dat=%3Cproquest_cross%3E2807762517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807762517&rft_id=info:pmid/&rfr_iscdi=true