On Manifold Learning in Plato's Cave: Remarks on Manifold Learning and Physical Phenomena
Many techniques in machine learning attempt explicitly or implicitly to infer a low-dimensional manifold structure of an underlying physical phenomenon from measurements without an explicit model of the phenomenon or the measurement apparatus. This paper presents a cautionary tale regarding the disc...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lederman, Roy R Toader, Bogdan |
description | Many techniques in machine learning attempt explicitly or implicitly to infer a low-dimensional manifold structure of an underlying physical phenomenon from measurements without an explicit model of the phenomenon or the measurement apparatus. This paper presents a cautionary tale regarding the discrepancy between the geometry of measurements and the geometry of the underlying phenomenon in a benign setting. The deformation in the metric illustrated in this paper is mathematically straightforward and unavoidable in the general case, and it is only one of several similar effects. While this is not always problematic, we provide an example of an arguably standard and harmless data processing procedure where this effect leads to an incorrect answer to a seemingly simple question. Although we focus on manifold learning, these issues apply broadly to dimensionality reduction and unsupervised learning. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2807214399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807214399</sourcerecordid><originalsourceid>FETCH-proquest_journals_28072143993</originalsourceid><addsrcrecordid>eNqNikELgjAYQEcQJOV_GHToJMxNU7tK0aFIoksn-chZs_mtNg3693no2KHTe_DeiHhciDBII84nxHeuYYzxZcLjWHjkfEC6B1S10RXdSbCo8EoV0kJDZxaO5vCSK3qULdi7o-bXDVjR4vZ26gJ6EImmlQgzMq5BO-l_OSXzzfqUb4OHNc9euq5sTG9xSCVPWcLDSGSZ-O_6ACJkQRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807214399</pqid></control><display><type>article</type><title>On Manifold Learning in Plato's Cave: Remarks on Manifold Learning and Physical Phenomena</title><source>Free E- Journals</source><creator>Lederman, Roy R ; Toader, Bogdan</creator><creatorcontrib>Lederman, Roy R ; Toader, Bogdan</creatorcontrib><description>Many techniques in machine learning attempt explicitly or implicitly to infer a low-dimensional manifold structure of an underlying physical phenomenon from measurements without an explicit model of the phenomenon or the measurement apparatus. This paper presents a cautionary tale regarding the discrepancy between the geometry of measurements and the geometry of the underlying phenomenon in a benign setting. The deformation in the metric illustrated in this paper is mathematically straightforward and unavoidable in the general case, and it is only one of several similar effects. While this is not always problematic, we provide an example of an arguably standard and harmless data processing procedure where this effect leads to an incorrect answer to a seemingly simple question. Although we focus on manifold learning, these issues apply broadly to dimensionality reduction and unsupervised learning.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data processing ; Machine learning ; Manifolds (mathematics) ; Unsupervised learning</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Lederman, Roy R</creatorcontrib><creatorcontrib>Toader, Bogdan</creatorcontrib><title>On Manifold Learning in Plato's Cave: Remarks on Manifold Learning and Physical Phenomena</title><title>arXiv.org</title><description>Many techniques in machine learning attempt explicitly or implicitly to infer a low-dimensional manifold structure of an underlying physical phenomenon from measurements without an explicit model of the phenomenon or the measurement apparatus. This paper presents a cautionary tale regarding the discrepancy between the geometry of measurements and the geometry of the underlying phenomenon in a benign setting. The deformation in the metric illustrated in this paper is mathematically straightforward and unavoidable in the general case, and it is only one of several similar effects. While this is not always problematic, we provide an example of an arguably standard and harmless data processing procedure where this effect leads to an incorrect answer to a seemingly simple question. Although we focus on manifold learning, these issues apply broadly to dimensionality reduction and unsupervised learning.</description><subject>Data processing</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Unsupervised learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikELgjAYQEcQJOV_GHToJMxNU7tK0aFIoksn-chZs_mtNg3693no2KHTe_DeiHhciDBII84nxHeuYYzxZcLjWHjkfEC6B1S10RXdSbCo8EoV0kJDZxaO5vCSK3qULdi7o-bXDVjR4vZ26gJ6EImmlQgzMq5BO-l_OSXzzfqUb4OHNc9euq5sTG9xSCVPWcLDSGSZ-O_6ACJkQRA</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Lederman, Roy R</creator><creator>Toader, Bogdan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230630</creationdate><title>On Manifold Learning in Plato's Cave: Remarks on Manifold Learning and Physical Phenomena</title><author>Lederman, Roy R ; Toader, Bogdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28072143993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data processing</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Lederman, Roy R</creatorcontrib><creatorcontrib>Toader, Bogdan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lederman, Roy R</au><au>Toader, Bogdan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On Manifold Learning in Plato's Cave: Remarks on Manifold Learning and Physical Phenomena</atitle><jtitle>arXiv.org</jtitle><date>2023-06-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Many techniques in machine learning attempt explicitly or implicitly to infer a low-dimensional manifold structure of an underlying physical phenomenon from measurements without an explicit model of the phenomenon or the measurement apparatus. This paper presents a cautionary tale regarding the discrepancy between the geometry of measurements and the geometry of the underlying phenomenon in a benign setting. The deformation in the metric illustrated in this paper is mathematically straightforward and unavoidable in the general case, and it is only one of several similar effects. While this is not always problematic, we provide an example of an arguably standard and harmless data processing procedure where this effect leads to an incorrect answer to a seemingly simple question. Although we focus on manifold learning, these issues apply broadly to dimensionality reduction and unsupervised learning.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2807214399 |
source | Free E- Journals |
subjects | Data processing Machine learning Manifolds (mathematics) Unsupervised learning |
title | On Manifold Learning in Plato's Cave: Remarks on Manifold Learning and Physical Phenomena |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20Manifold%20Learning%20in%20Plato's%20Cave:%20Remarks%20on%20Manifold%20Learning%20and%20Physical%20Phenomena&rft.jtitle=arXiv.org&rft.au=Lederman,%20Roy%20R&rft.date=2023-06-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2807214399%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807214399&rft_id=info:pmid/&rfr_iscdi=true |