AI-based Predictive Analytic Approaches for safeguarding the Future of Electric/Hybrid Vehicles
In response to the global need for sustainable energy, green technology may help fight climate change. Before green infrastructure to be easily integrated into the world's energy system, it needs upgrading. By improving energy infrastructure and decision-making, artificial intelligence (AI) may...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In response to the global need for sustainable energy, green technology may help fight climate change. Before green infrastructure to be easily integrated into the world's energy system, it needs upgrading. By improving energy infrastructure and decision-making, artificial intelligence (AI) may help solve this challenge. EHVs have grown in popularity because to concerns about global warming and the need for more ecologically friendly transportation. EHVs may work better with cutting-edge technologies like AI. Electric vehicles (EVs) reduce greenhouse gas emissions and promote sustainable mobility. Electric automobiles (EVs) are growing in popularity due to their benefits for climate change mitigation and sustainable mobility. Unfortunately, EV production consumes a lot of energy and materials, which may harm nature. EV production is being improved using green technologies like artificial intelligence and predictive analysis. Electric and hybrid vehicles (EHVs) may help meet the need for ecologically friendly transportation. However, the Battery Management System (BMS) controls EHV performance and longevity. AI may improve EHV energy efficiency, emissions reduction, and sustainability. Remote hijacking, security breaches, and unauthorized access are EHV cybersecurity vulnerabilities addressed in the article. AI research and development may help make transportation more sustainable, as may optimizing EHVs and charging infrastructure. |
---|---|
ISSN: | 2331-8422 |