Lightweight, strong and thermally insulating polymethylsilsesquioxane- polybenzoxazine aerogels by ambient pressure drying
Lightweight and high-strength aerogels are specially required in thermal insulation and thermal protection. However, maintaining light weight and high-strength still represents a formidable challenge. Herein we explore a strategy to introduce polyvinylmethyldimethoxysilane (PVMDMS) into polybenzoxaz...
Gespeichert in:
Veröffentlicht in: | Journal of sol-gel science and technology 2023-05, Vol.106 (2), p.422-431 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | 2 |
container_start_page | 422 |
container_title | Journal of sol-gel science and technology |
container_volume | 106 |
creator | Li, Liangjun Xiao, Yunyun Zhang, Sizhao Feng, Junzong Jiang, Yonggang Feng, Jian |
description | Lightweight and high-strength aerogels are specially required in thermal insulation and thermal protection. However, maintaining light weight and high-strength still represents a formidable challenge. Herein we explore a strategy to introduce polyvinylmethyldimethoxysilane (PVMDMS) into polybenzoxazine (PBO) for enhancing the skeleton, and PVMDMS-PBO aerogels were prepared by sol-gel method and ambient pressure drying. The resulting PVMDMS-PBO aerogels possess a 3D nano-porous network structure, and the density can be as low as 0.11 g/cm
3
. The compressive strength of PVMDMS-PBO aerogels at 10 % strain (10% ε) is 0.55 MPa, much higher than the 0.12 MPa at 10% ε of the pure PBO aerogels with a similar density of 0.13 g/cm
3
. With increasing PVMDMS content, the thermal conductivity of PBO aerogel decreased from 0.0489 W/(m·K) to 0.0432 W/(m·K). The peak heat release rate decreased from 125.0 W/g to 91.7 W/g. The lightweight, high strength, excellent flame retardancy and thermal insulation of PVMDMS-PBO aerogels make them conducive to thermal insulation application.
Highlights
The PVMDMS-PBO aerogels possess a low density of 0.11g/cm3 by ambient pressure drying.
The PVMDMS-PBO aerogels exhibit high compressive strength of 0.55 MPa at 10 % stain.
The PVMDMS-PBO aerogels have superior thermal insulation and flame retardancy. |
doi_str_mv | 10.1007/s10971-021-05619-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807173716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807173716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-af7297bd28716a4d069ed3e0ccce969385c921c2a080062f0ac2cd6f169949993</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Br1YnaTdpjrL4Dxa86Dmk6bTbpZvuJi3a_fRmreDNw8wwzHu_gUfINYM7BiDvAwMlWQI81kIwlYgTMmMLmSZZnolTMgPF8wQkyHNyEcIGABYZkzNyWDX1uv_EY7-lofedq6lxJe3X6LembUfauDC0pm_iYde14xb79diGpg0Y9kPTfRmHyc-lQHeI66FxSA36rsY20GKkZls06Hq68xjC4JGWfoy0S3JWmUi5-p1z8vH0-L58SVZvz6_Lh1ViU6b6xFSSK1mUPJdMmKwEobBMEay1qIRK84VVnFluIAcQvAJjuS1FxYRSmVIqnZObibvz3X7A0OtNN3gXX2qeg2QyjeCo4pPK-i4Ej5Xe-WZr_KgZ6GPGespYx4z1T8b6aEonU4hiV6P_Q__j-gZsD4LN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807173716</pqid></control><display><type>article</type><title>Lightweight, strong and thermally insulating polymethylsilsesquioxane- polybenzoxazine aerogels by ambient pressure drying</title><source>SpringerLink Journals</source><creator>Li, Liangjun ; Xiao, Yunyun ; Zhang, Sizhao ; Feng, Junzong ; Jiang, Yonggang ; Feng, Jian</creator><creatorcontrib>Li, Liangjun ; Xiao, Yunyun ; Zhang, Sizhao ; Feng, Junzong ; Jiang, Yonggang ; Feng, Jian</creatorcontrib><description>Lightweight and high-strength aerogels are specially required in thermal insulation and thermal protection. However, maintaining light weight and high-strength still represents a formidable challenge. Herein we explore a strategy to introduce polyvinylmethyldimethoxysilane (PVMDMS) into polybenzoxazine (PBO) for enhancing the skeleton, and PVMDMS-PBO aerogels were prepared by sol-gel method and ambient pressure drying. The resulting PVMDMS-PBO aerogels possess a 3D nano-porous network structure, and the density can be as low as 0.11 g/cm
3
. The compressive strength of PVMDMS-PBO aerogels at 10 % strain (10% ε) is 0.55 MPa, much higher than the 0.12 MPa at 10% ε of the pure PBO aerogels with a similar density of 0.13 g/cm
3
. With increasing PVMDMS content, the thermal conductivity of PBO aerogel decreased from 0.0489 W/(m·K) to 0.0432 W/(m·K). The peak heat release rate decreased from 125.0 W/g to 91.7 W/g. The lightweight, high strength, excellent flame retardancy and thermal insulation of PVMDMS-PBO aerogels make them conducive to thermal insulation application.
Highlights
The PVMDMS-PBO aerogels possess a low density of 0.11g/cm3 by ambient pressure drying.
The PVMDMS-PBO aerogels exhibit high compressive strength of 0.55 MPa at 10 % stain.
The PVMDMS-PBO aerogels have superior thermal insulation and flame retardancy.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-021-05619-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aerogels ; Ceramics ; Chemistry and Materials Science ; Composites ; Compressive strength ; cryogels ; Density ; Drying ; etc. ; Glass ; Heat release rate ; High strength ; Inorganic Chemistry ; Insulation ; Lightweight ; Materials Science ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper: Nano- and macroporous materials (aerogels ; Polybenzoxazines ; Pressure ; Sol-gel processes ; Sol-Gel Research in China ; Thermal conductivity ; Thermal insulation ; Thermal protection ; Weight reduction ; xerogels</subject><ispartof>Journal of sol-gel science and technology, 2023-05, Vol.106 (2), p.422-431</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-af7297bd28716a4d069ed3e0ccce969385c921c2a080062f0ac2cd6f169949993</citedby><cites>FETCH-LOGICAL-c319t-af7297bd28716a4d069ed3e0ccce969385c921c2a080062f0ac2cd6f169949993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-021-05619-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-021-05619-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Liangjun</creatorcontrib><creatorcontrib>Xiao, Yunyun</creatorcontrib><creatorcontrib>Zhang, Sizhao</creatorcontrib><creatorcontrib>Feng, Junzong</creatorcontrib><creatorcontrib>Jiang, Yonggang</creatorcontrib><creatorcontrib>Feng, Jian</creatorcontrib><title>Lightweight, strong and thermally insulating polymethylsilsesquioxane- polybenzoxazine aerogels by ambient pressure drying</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Lightweight and high-strength aerogels are specially required in thermal insulation and thermal protection. However, maintaining light weight and high-strength still represents a formidable challenge. Herein we explore a strategy to introduce polyvinylmethyldimethoxysilane (PVMDMS) into polybenzoxazine (PBO) for enhancing the skeleton, and PVMDMS-PBO aerogels were prepared by sol-gel method and ambient pressure drying. The resulting PVMDMS-PBO aerogels possess a 3D nano-porous network structure, and the density can be as low as 0.11 g/cm
3
. The compressive strength of PVMDMS-PBO aerogels at 10 % strain (10% ε) is 0.55 MPa, much higher than the 0.12 MPa at 10% ε of the pure PBO aerogels with a similar density of 0.13 g/cm
3
. With increasing PVMDMS content, the thermal conductivity of PBO aerogel decreased from 0.0489 W/(m·K) to 0.0432 W/(m·K). The peak heat release rate decreased from 125.0 W/g to 91.7 W/g. The lightweight, high strength, excellent flame retardancy and thermal insulation of PVMDMS-PBO aerogels make them conducive to thermal insulation application.
Highlights
The PVMDMS-PBO aerogels possess a low density of 0.11g/cm3 by ambient pressure drying.
The PVMDMS-PBO aerogels exhibit high compressive strength of 0.55 MPa at 10 % stain.
The PVMDMS-PBO aerogels have superior thermal insulation and flame retardancy.</description><subject>Aerogels</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Compressive strength</subject><subject>cryogels</subject><subject>Density</subject><subject>Drying</subject><subject>etc.</subject><subject>Glass</subject><subject>Heat release rate</subject><subject>High strength</subject><subject>Inorganic Chemistry</subject><subject>Insulation</subject><subject>Lightweight</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper: Nano- and macroporous materials (aerogels</subject><subject>Polybenzoxazines</subject><subject>Pressure</subject><subject>Sol-gel processes</subject><subject>Sol-Gel Research in China</subject><subject>Thermal conductivity</subject><subject>Thermal insulation</subject><subject>Thermal protection</subject><subject>Weight reduction</subject><subject>xerogels</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Br1YnaTdpjrL4Dxa86Dmk6bTbpZvuJi3a_fRmreDNw8wwzHu_gUfINYM7BiDvAwMlWQI81kIwlYgTMmMLmSZZnolTMgPF8wQkyHNyEcIGABYZkzNyWDX1uv_EY7-lofedq6lxJe3X6LembUfauDC0pm_iYde14xb79diGpg0Y9kPTfRmHyc-lQHeI66FxSA36rsY20GKkZls06Hq68xjC4JGWfoy0S3JWmUi5-p1z8vH0-L58SVZvz6_Lh1ViU6b6xFSSK1mUPJdMmKwEobBMEay1qIRK84VVnFluIAcQvAJjuS1FxYRSmVIqnZObibvz3X7A0OtNN3gXX2qeg2QyjeCo4pPK-i4Ej5Xe-WZr_KgZ6GPGespYx4z1T8b6aEonU4hiV6P_Q__j-gZsD4LN</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Li, Liangjun</creator><creator>Xiao, Yunyun</creator><creator>Zhang, Sizhao</creator><creator>Feng, Junzong</creator><creator>Jiang, Yonggang</creator><creator>Feng, Jian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230501</creationdate><title>Lightweight, strong and thermally insulating polymethylsilsesquioxane- polybenzoxazine aerogels by ambient pressure drying</title><author>Li, Liangjun ; Xiao, Yunyun ; Zhang, Sizhao ; Feng, Junzong ; Jiang, Yonggang ; Feng, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-af7297bd28716a4d069ed3e0ccce969385c921c2a080062f0ac2cd6f169949993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerogels</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Compressive strength</topic><topic>cryogels</topic><topic>Density</topic><topic>Drying</topic><topic>etc.</topic><topic>Glass</topic><topic>Heat release rate</topic><topic>High strength</topic><topic>Inorganic Chemistry</topic><topic>Insulation</topic><topic>Lightweight</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper: Nano- and macroporous materials (aerogels</topic><topic>Polybenzoxazines</topic><topic>Pressure</topic><topic>Sol-gel processes</topic><topic>Sol-Gel Research in China</topic><topic>Thermal conductivity</topic><topic>Thermal insulation</topic><topic>Thermal protection</topic><topic>Weight reduction</topic><topic>xerogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Liangjun</creatorcontrib><creatorcontrib>Xiao, Yunyun</creatorcontrib><creatorcontrib>Zhang, Sizhao</creatorcontrib><creatorcontrib>Feng, Junzong</creatorcontrib><creatorcontrib>Jiang, Yonggang</creatorcontrib><creatorcontrib>Feng, Jian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Liangjun</au><au>Xiao, Yunyun</au><au>Zhang, Sizhao</au><au>Feng, Junzong</au><au>Jiang, Yonggang</au><au>Feng, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight, strong and thermally insulating polymethylsilsesquioxane- polybenzoxazine aerogels by ambient pressure drying</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>106</volume><issue>2</issue><spage>422</spage><epage>431</epage><pages>422-431</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Lightweight and high-strength aerogels are specially required in thermal insulation and thermal protection. However, maintaining light weight and high-strength still represents a formidable challenge. Herein we explore a strategy to introduce polyvinylmethyldimethoxysilane (PVMDMS) into polybenzoxazine (PBO) for enhancing the skeleton, and PVMDMS-PBO aerogels were prepared by sol-gel method and ambient pressure drying. The resulting PVMDMS-PBO aerogels possess a 3D nano-porous network structure, and the density can be as low as 0.11 g/cm
3
. The compressive strength of PVMDMS-PBO aerogels at 10 % strain (10% ε) is 0.55 MPa, much higher than the 0.12 MPa at 10% ε of the pure PBO aerogels with a similar density of 0.13 g/cm
3
. With increasing PVMDMS content, the thermal conductivity of PBO aerogel decreased from 0.0489 W/(m·K) to 0.0432 W/(m·K). The peak heat release rate decreased from 125.0 W/g to 91.7 W/g. The lightweight, high strength, excellent flame retardancy and thermal insulation of PVMDMS-PBO aerogels make them conducive to thermal insulation application.
Highlights
The PVMDMS-PBO aerogels possess a low density of 0.11g/cm3 by ambient pressure drying.
The PVMDMS-PBO aerogels exhibit high compressive strength of 0.55 MPa at 10 % stain.
The PVMDMS-PBO aerogels have superior thermal insulation and flame retardancy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-021-05619-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0707 |
ispartof | Journal of sol-gel science and technology, 2023-05, Vol.106 (2), p.422-431 |
issn | 0928-0707 1573-4846 |
language | eng |
recordid | cdi_proquest_journals_2807173716 |
source | SpringerLink Journals |
subjects | Aerogels Ceramics Chemistry and Materials Science Composites Compressive strength cryogels Density Drying etc. Glass Heat release rate High strength Inorganic Chemistry Insulation Lightweight Materials Science Nanotechnology Natural Materials Optical and Electronic Materials Original Paper: Nano- and macroporous materials (aerogels Polybenzoxazines Pressure Sol-gel processes Sol-Gel Research in China Thermal conductivity Thermal insulation Thermal protection Weight reduction xerogels |
title | Lightweight, strong and thermally insulating polymethylsilsesquioxane- polybenzoxazine aerogels by ambient pressure drying |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight,%20strong%20and%20thermally%20insulating%20polymethylsilsesquioxane-%20polybenzoxazine%20aerogels%20by%20ambient%20pressure%20drying&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Li,%20Liangjun&rft.date=2023-05-01&rft.volume=106&rft.issue=2&rft.spage=422&rft.epage=431&rft.pages=422-431&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-021-05619-6&rft_dat=%3Cproquest_cross%3E2807173716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807173716&rft_id=info:pmid/&rfr_iscdi=true |