Smart injection molding based on material adaptive control

The study aims to explain the concept of a smart Plastic Injection Moulding (PIM) machine based on material adaptive control. In the current industrial era 4.0, information technology and artificial intelligence systems are very influential on the manufacturing industry. Therefore, the need for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hartono, Moh, Adiwidodo, Satworo, Rarindo, Hari, Wicaksono, Hangga
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2531
creator Hartono, Moh
Adiwidodo, Satworo
Rarindo, Hari
Wicaksono, Hangga
description The study aims to explain the concept of a smart Plastic Injection Moulding (PIM) machine based on material adaptive control. In the current industrial era 4.0, information technology and artificial intelligence systems are very influential on the manufacturing industry. Therefore, the need for the manufacturing industry to use smart machines, including PIM machines, is absolutely to realize. In this study, the concept of a smart PIM machine uses an artificial intelligence approach with an artificial neural network. With an artificial neural network, the system will practice continuously so that the system can make adjustments and get used to the input material. In the hopper section of the PIM machine, there is an image sensor that can record any changes to the material that is entered, then a signal is sent to the control panel. In the control panel section, there is an adaptive control process based on artificial intelligence artificial neural networks to automatically make adjustments in parameter settings in the PIM process. Parameters set include injection temperature, injection pressure, injection speed, holding time, injection time, and clamping force. These parameter settings are automatically regulated by a smart system that adapts to the characteristics of the material being processed. The result of the research is a video simulation of the concept of a smart PIM machine based on material adaptive control. This article hopes that this concept can be realized into a small-scale prototype of a smart PIM machine and can gradually be realized in a smart PIM machine on a real scale.
doi_str_mv 10.1063/5.0126052
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2807140412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807140412</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-1998bc6ad347ca0bd175986872b5bf2a5839a0c20713b9f05bd0727e024ac5ee3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_8GAO2HqTTJ5uZPiCwouVHAX8hpJmU7GTFrw3zvFgjtXFw7fOZdzELrEsMDA6Q1bACYcGDlCM8wYrgXH_BjNAFRTk4Z-nKKzcVwDECWEnKHb143JpYr9OrgSU19tUudj_1lZMwZf7QVTQo6mq4w3Q4m7ULnUl5y6c3TSmm4MF4c7R-8P92_Lp3r18vi8vFvVA-ay1FgpaR03njbCGbAeC6Ykl4JYZltimKTKgCMgMLWqBWY9CCICkMY4FgKdo6vf3CGnr20Yi16nbe6nl5rIydVAg8lEXf9So4vF7KvoIcep3LfGoPfbaKYP2_wH71L-A_XgW_oDhMdjvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2807140412</pqid></control><display><type>conference_proceeding</type><title>Smart injection molding based on material adaptive control</title><source>AIP Journals Complete</source><creator>Hartono, Moh ; Adiwidodo, Satworo ; Rarindo, Hari ; Wicaksono, Hangga</creator><contributor>Khairy, Muhammad Shulhan ; Pramudhita, Agung Nugroho ; Syulistyo, Arie Rachmad ; Wijayaningrum, Vivi Nur ; Asmara, Rosa Andrie ; Hendrawan, Muhammad Afif ; Ronilaya, Ferdian</contributor><creatorcontrib>Hartono, Moh ; Adiwidodo, Satworo ; Rarindo, Hari ; Wicaksono, Hangga ; Khairy, Muhammad Shulhan ; Pramudhita, Agung Nugroho ; Syulistyo, Arie Rachmad ; Wijayaningrum, Vivi Nur ; Asmara, Rosa Andrie ; Hendrawan, Muhammad Afif ; Ronilaya, Ferdian</creatorcontrib><description>The study aims to explain the concept of a smart Plastic Injection Moulding (PIM) machine based on material adaptive control. In the current industrial era 4.0, information technology and artificial intelligence systems are very influential on the manufacturing industry. Therefore, the need for the manufacturing industry to use smart machines, including PIM machines, is absolutely to realize. In this study, the concept of a smart PIM machine uses an artificial intelligence approach with an artificial neural network. With an artificial neural network, the system will practice continuously so that the system can make adjustments and get used to the input material. In the hopper section of the PIM machine, there is an image sensor that can record any changes to the material that is entered, then a signal is sent to the control panel. In the control panel section, there is an adaptive control process based on artificial intelligence artificial neural networks to automatically make adjustments in parameter settings in the PIM process. Parameters set include injection temperature, injection pressure, injection speed, holding time, injection time, and clamping force. These parameter settings are automatically regulated by a smart system that adapts to the characteristics of the material being processed. The result of the research is a video simulation of the concept of a smart PIM machine based on material adaptive control. This article hopes that this concept can be realized into a small-scale prototype of a smart PIM machine and can gradually be realized in a smart PIM machine on a real scale.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0126052</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adaptive control ; Artificial intelligence ; Artificial neural networks ; Control boards ; Injection molding ; Manufacturing ; Neural networks ; Process parameters</subject><ispartof>AIP conference proceedings, 2023, Vol.2531 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0126052$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Khairy, Muhammad Shulhan</contributor><contributor>Pramudhita, Agung Nugroho</contributor><contributor>Syulistyo, Arie Rachmad</contributor><contributor>Wijayaningrum, Vivi Nur</contributor><contributor>Asmara, Rosa Andrie</contributor><contributor>Hendrawan, Muhammad Afif</contributor><contributor>Ronilaya, Ferdian</contributor><creatorcontrib>Hartono, Moh</creatorcontrib><creatorcontrib>Adiwidodo, Satworo</creatorcontrib><creatorcontrib>Rarindo, Hari</creatorcontrib><creatorcontrib>Wicaksono, Hangga</creatorcontrib><title>Smart injection molding based on material adaptive control</title><title>AIP conference proceedings</title><description>The study aims to explain the concept of a smart Plastic Injection Moulding (PIM) machine based on material adaptive control. In the current industrial era 4.0, information technology and artificial intelligence systems are very influential on the manufacturing industry. Therefore, the need for the manufacturing industry to use smart machines, including PIM machines, is absolutely to realize. In this study, the concept of a smart PIM machine uses an artificial intelligence approach with an artificial neural network. With an artificial neural network, the system will practice continuously so that the system can make adjustments and get used to the input material. In the hopper section of the PIM machine, there is an image sensor that can record any changes to the material that is entered, then a signal is sent to the control panel. In the control panel section, there is an adaptive control process based on artificial intelligence artificial neural networks to automatically make adjustments in parameter settings in the PIM process. Parameters set include injection temperature, injection pressure, injection speed, holding time, injection time, and clamping force. These parameter settings are automatically regulated by a smart system that adapts to the characteristics of the material being processed. The result of the research is a video simulation of the concept of a smart PIM machine based on material adaptive control. This article hopes that this concept can be realized into a small-scale prototype of a smart PIM machine and can gradually be realized in a smart PIM machine on a real scale.</description><subject>Adaptive control</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Control boards</subject><subject>Injection molding</subject><subject>Manufacturing</subject><subject>Neural networks</subject><subject>Process parameters</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_8GAO2HqTTJ5uZPiCwouVHAX8hpJmU7GTFrw3zvFgjtXFw7fOZdzELrEsMDA6Q1bACYcGDlCM8wYrgXH_BjNAFRTk4Z-nKKzcVwDECWEnKHb143JpYr9OrgSU19tUudj_1lZMwZf7QVTQo6mq4w3Q4m7ULnUl5y6c3TSmm4MF4c7R-8P92_Lp3r18vi8vFvVA-ay1FgpaR03njbCGbAeC6Ykl4JYZltimKTKgCMgMLWqBWY9CCICkMY4FgKdo6vf3CGnr20Yi16nbe6nl5rIydVAg8lEXf9So4vF7KvoIcep3LfGoPfbaKYP2_wH71L-A_XgW_oDhMdjvA</recordid><startdate>20230428</startdate><enddate>20230428</enddate><creator>Hartono, Moh</creator><creator>Adiwidodo, Satworo</creator><creator>Rarindo, Hari</creator><creator>Wicaksono, Hangga</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230428</creationdate><title>Smart injection molding based on material adaptive control</title><author>Hartono, Moh ; Adiwidodo, Satworo ; Rarindo, Hari ; Wicaksono, Hangga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-1998bc6ad347ca0bd175986872b5bf2a5839a0c20713b9f05bd0727e024ac5ee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Control boards</topic><topic>Injection molding</topic><topic>Manufacturing</topic><topic>Neural networks</topic><topic>Process parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartono, Moh</creatorcontrib><creatorcontrib>Adiwidodo, Satworo</creatorcontrib><creatorcontrib>Rarindo, Hari</creatorcontrib><creatorcontrib>Wicaksono, Hangga</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartono, Moh</au><au>Adiwidodo, Satworo</au><au>Rarindo, Hari</au><au>Wicaksono, Hangga</au><au>Khairy, Muhammad Shulhan</au><au>Pramudhita, Agung Nugroho</au><au>Syulistyo, Arie Rachmad</au><au>Wijayaningrum, Vivi Nur</au><au>Asmara, Rosa Andrie</au><au>Hendrawan, Muhammad Afif</au><au>Ronilaya, Ferdian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Smart injection molding based on material adaptive control</atitle><btitle>AIP conference proceedings</btitle><date>2023-04-28</date><risdate>2023</risdate><volume>2531</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The study aims to explain the concept of a smart Plastic Injection Moulding (PIM) machine based on material adaptive control. In the current industrial era 4.0, information technology and artificial intelligence systems are very influential on the manufacturing industry. Therefore, the need for the manufacturing industry to use smart machines, including PIM machines, is absolutely to realize. In this study, the concept of a smart PIM machine uses an artificial intelligence approach with an artificial neural network. With an artificial neural network, the system will practice continuously so that the system can make adjustments and get used to the input material. In the hopper section of the PIM machine, there is an image sensor that can record any changes to the material that is entered, then a signal is sent to the control panel. In the control panel section, there is an adaptive control process based on artificial intelligence artificial neural networks to automatically make adjustments in parameter settings in the PIM process. Parameters set include injection temperature, injection pressure, injection speed, holding time, injection time, and clamping force. These parameter settings are automatically regulated by a smart system that adapts to the characteristics of the material being processed. The result of the research is a video simulation of the concept of a smart PIM machine based on material adaptive control. This article hopes that this concept can be realized into a small-scale prototype of a smart PIM machine and can gradually be realized in a smart PIM machine on a real scale.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0126052</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2531 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2807140412
source AIP Journals Complete
subjects Adaptive control
Artificial intelligence
Artificial neural networks
Control boards
Injection molding
Manufacturing
Neural networks
Process parameters
title Smart injection molding based on material adaptive control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Smart%20injection%20molding%20based%20on%20material%20adaptive%20control&rft.btitle=AIP%20conference%20proceedings&rft.au=Hartono,%20Moh&rft.date=2023-04-28&rft.volume=2531&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0126052&rft_dat=%3Cproquest_scita%3E2807140412%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807140412&rft_id=info:pmid/&rfr_iscdi=true