Radiomics study of lung tumor volume segmentation technique in contrast-enhanced Computed Tomography (CT) thorax images: A comparative study

Medical image segmentation is crucial in extracting information regarding tumour characteristics including lung cancer. To obtain the information of macroscopic (tumour volume) and microscopic features (radiomics study), image segmentation process is required. Various kind of advance segmentation al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yunus, Mardhiyati Mohd, Sin, Ng Hui, Sabarudin, Akmal, Karim, Muhammad Khalis Abdul, Kechik, Mohd Mustafa Awang, Razali, Rosmizan Ahmad, Shamsul, Mohd Shahril Mohd
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2619
creator Yunus, Mardhiyati Mohd
Sin, Ng Hui
Sabarudin, Akmal
Karim, Muhammad Khalis Abdul
Kechik, Mohd Mustafa Awang
Razali, Rosmizan Ahmad
Shamsul, Mohd Shahril Mohd
description Medical image segmentation is crucial in extracting information regarding tumour characteristics including lung cancer. To obtain the information of macroscopic (tumour volume) and microscopic features (radiomics study), image segmentation process is required. Various kind of advance segmentation algorithms are available nowadays yet there is no so-called ‘the best segmentation technique’ that can be used in medical imaging modalities. This study compared manual slice by slice segmentation and semi-automated segmentation of lung tumour volume measurement with radiomics features of shape analysis and first-order statistical measures of texture analysis. Manual slice by slice delineation and region-growing semi-automated segmentation using 3D slicer software was performed on 45 sets of contrast-enhanced Computed Tomography (CT) Thorax images downloaded from The Cancer Imaging Archive (TCIA). The results showed that the manually and semi-automated segmentation has high similarity with volume Hausdorff distance (AHD) measured as 1.02 ± 0.71mm, high Dice similarity coefficient (DSC) value is 0.83 ± 0.05 and p value is 0.997; p > 0.05. Overall, 84.62% of the features under shape analysis and 33.33% of first-order statistical measures of texture analysis are no significant difference between these two segmentation methods. In conclusion, semiautomated segmentation can be perform as good as manual segmentation in lung tumour volume measurement, especially in terms of the ability to extract the shape order features of the lung tumour radiomics analysis.
doi_str_mv 10.1063/5.0122531
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2807140373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807140373</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-ac1ac22a0e9d6e86500263c0d34ab09f0883330ccd6ad98760edcb629055e38d3</originalsourceid><addsrcrecordid>eNp9UctKxDAUDaLgOLrwDwJuVOh40zRp624ovmBAkBHclUySPoZpUpN0cP7Bj7YyA-5c3bs4j3vOReiSwIwAp3dsBiSOGSVHaEIYI1HKCT9GE4A8ieKEfpyiM-_XAHGeptkEfb8J1dqulR77MKgdthXeDKbGYeisw1u7GTqNva47bYIIrTU4aNmY9nPQuDVYWhOc8CHSphFGaoUL2_VDGJel7WztRN_s8HWxvMGhsU584bYTtfb3eD5yu164UXSr9-bn6KQSG68vDnOK3h8flsVztHh9einmi6gnPAuRkETIOBagc8V1xtmYhlMJiiZiBXkFWUYpBSkVFyrPUg5ayRWPc2BM00zRKbra6_bOjjl8KNd2cGa0LOMMUpIATemIut2jvGz30cvejde7Xbm1rmTloemyV9V_YALl72v-CPQHSF-CnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2807140373</pqid></control><display><type>conference_proceeding</type><title>Radiomics study of lung tumor volume segmentation technique in contrast-enhanced Computed Tomography (CT) thorax images: A comparative study</title><source>AIP Journals Complete</source><creator>Yunus, Mardhiyati Mohd ; Sin, Ng Hui ; Sabarudin, Akmal ; Karim, Muhammad Khalis Abdul ; Kechik, Mohd Mustafa Awang ; Razali, Rosmizan Ahmad ; Shamsul, Mohd Shahril Mohd</creator><contributor>Ramdani, Agus ; Savalas, Lalu Rudyat Telly ; Susilawati ; Hadisaputra, Saprizal ; Doyan, Aris</contributor><creatorcontrib>Yunus, Mardhiyati Mohd ; Sin, Ng Hui ; Sabarudin, Akmal ; Karim, Muhammad Khalis Abdul ; Kechik, Mohd Mustafa Awang ; Razali, Rosmizan Ahmad ; Shamsul, Mohd Shahril Mohd ; Ramdani, Agus ; Savalas, Lalu Rudyat Telly ; Susilawati ; Hadisaputra, Saprizal ; Doyan, Aris</creatorcontrib><description>Medical image segmentation is crucial in extracting information regarding tumour characteristics including lung cancer. To obtain the information of macroscopic (tumour volume) and microscopic features (radiomics study), image segmentation process is required. Various kind of advance segmentation algorithms are available nowadays yet there is no so-called ‘the best segmentation technique’ that can be used in medical imaging modalities. This study compared manual slice by slice segmentation and semi-automated segmentation of lung tumour volume measurement with radiomics features of shape analysis and first-order statistical measures of texture analysis. Manual slice by slice delineation and region-growing semi-automated segmentation using 3D slicer software was performed on 45 sets of contrast-enhanced Computed Tomography (CT) Thorax images downloaded from The Cancer Imaging Archive (TCIA). The results showed that the manually and semi-automated segmentation has high similarity with volume Hausdorff distance (AHD) measured as 1.02 ± 0.71mm, high Dice similarity coefficient (DSC) value is 0.83 ± 0.05 and p value is 0.997; p &gt; 0.05. Overall, 84.62% of the features under shape analysis and 33.33% of first-order statistical measures of texture analysis are no significant difference between these two segmentation methods. In conclusion, semiautomated segmentation can be perform as good as manual segmentation in lung tumour volume measurement, especially in terms of the ability to extract the shape order features of the lung tumour radiomics analysis.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0122531</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Automation ; Comparative studies ; Computed tomography ; Image contrast ; Image enhancement ; Image segmentation ; Medical imaging ; Metric space ; Radiomics ; Texture ; Thorax ; Tomography ; Tumors ; Volume measurement</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2619 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0122531$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ramdani, Agus</contributor><contributor>Savalas, Lalu Rudyat Telly</contributor><contributor>Susilawati</contributor><contributor>Hadisaputra, Saprizal</contributor><contributor>Doyan, Aris</contributor><creatorcontrib>Yunus, Mardhiyati Mohd</creatorcontrib><creatorcontrib>Sin, Ng Hui</creatorcontrib><creatorcontrib>Sabarudin, Akmal</creatorcontrib><creatorcontrib>Karim, Muhammad Khalis Abdul</creatorcontrib><creatorcontrib>Kechik, Mohd Mustafa Awang</creatorcontrib><creatorcontrib>Razali, Rosmizan Ahmad</creatorcontrib><creatorcontrib>Shamsul, Mohd Shahril Mohd</creatorcontrib><title>Radiomics study of lung tumor volume segmentation technique in contrast-enhanced Computed Tomography (CT) thorax images: A comparative study</title><title>AIP Conference Proceedings</title><description>Medical image segmentation is crucial in extracting information regarding tumour characteristics including lung cancer. To obtain the information of macroscopic (tumour volume) and microscopic features (radiomics study), image segmentation process is required. Various kind of advance segmentation algorithms are available nowadays yet there is no so-called ‘the best segmentation technique’ that can be used in medical imaging modalities. This study compared manual slice by slice segmentation and semi-automated segmentation of lung tumour volume measurement with radiomics features of shape analysis and first-order statistical measures of texture analysis. Manual slice by slice delineation and region-growing semi-automated segmentation using 3D slicer software was performed on 45 sets of contrast-enhanced Computed Tomography (CT) Thorax images downloaded from The Cancer Imaging Archive (TCIA). The results showed that the manually and semi-automated segmentation has high similarity with volume Hausdorff distance (AHD) measured as 1.02 ± 0.71mm, high Dice similarity coefficient (DSC) value is 0.83 ± 0.05 and p value is 0.997; p &gt; 0.05. Overall, 84.62% of the features under shape analysis and 33.33% of first-order statistical measures of texture analysis are no significant difference between these two segmentation methods. In conclusion, semiautomated segmentation can be perform as good as manual segmentation in lung tumour volume measurement, especially in terms of the ability to extract the shape order features of the lung tumour radiomics analysis.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Comparative studies</subject><subject>Computed tomography</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><subject>Metric space</subject><subject>Radiomics</subject><subject>Texture</subject><subject>Thorax</subject><subject>Tomography</subject><subject>Tumors</subject><subject>Volume measurement</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9UctKxDAUDaLgOLrwDwJuVOh40zRp624ovmBAkBHclUySPoZpUpN0cP7Bj7YyA-5c3bs4j3vOReiSwIwAp3dsBiSOGSVHaEIYI1HKCT9GE4A8ieKEfpyiM-_XAHGeptkEfb8J1dqulR77MKgdthXeDKbGYeisw1u7GTqNva47bYIIrTU4aNmY9nPQuDVYWhOc8CHSphFGaoUL2_VDGJel7WztRN_s8HWxvMGhsU584bYTtfb3eD5yu164UXSr9-bn6KQSG68vDnOK3h8flsVztHh9einmi6gnPAuRkETIOBagc8V1xtmYhlMJiiZiBXkFWUYpBSkVFyrPUg5ayRWPc2BM00zRKbra6_bOjjl8KNd2cGa0LOMMUpIATemIut2jvGz30cvejde7Xbm1rmTloemyV9V_YALl72v-CPQHSF-CnA</recordid><startdate>20230428</startdate><enddate>20230428</enddate><creator>Yunus, Mardhiyati Mohd</creator><creator>Sin, Ng Hui</creator><creator>Sabarudin, Akmal</creator><creator>Karim, Muhammad Khalis Abdul</creator><creator>Kechik, Mohd Mustafa Awang</creator><creator>Razali, Rosmizan Ahmad</creator><creator>Shamsul, Mohd Shahril Mohd</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230428</creationdate><title>Radiomics study of lung tumor volume segmentation technique in contrast-enhanced Computed Tomography (CT) thorax images: A comparative study</title><author>Yunus, Mardhiyati Mohd ; Sin, Ng Hui ; Sabarudin, Akmal ; Karim, Muhammad Khalis Abdul ; Kechik, Mohd Mustafa Awang ; Razali, Rosmizan Ahmad ; Shamsul, Mohd Shahril Mohd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-ac1ac22a0e9d6e86500263c0d34ab09f0883330ccd6ad98760edcb629055e38d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Comparative studies</topic><topic>Computed tomography</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><topic>Metric space</topic><topic>Radiomics</topic><topic>Texture</topic><topic>Thorax</topic><topic>Tomography</topic><topic>Tumors</topic><topic>Volume measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yunus, Mardhiyati Mohd</creatorcontrib><creatorcontrib>Sin, Ng Hui</creatorcontrib><creatorcontrib>Sabarudin, Akmal</creatorcontrib><creatorcontrib>Karim, Muhammad Khalis Abdul</creatorcontrib><creatorcontrib>Kechik, Mohd Mustafa Awang</creatorcontrib><creatorcontrib>Razali, Rosmizan Ahmad</creatorcontrib><creatorcontrib>Shamsul, Mohd Shahril Mohd</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yunus, Mardhiyati Mohd</au><au>Sin, Ng Hui</au><au>Sabarudin, Akmal</au><au>Karim, Muhammad Khalis Abdul</au><au>Kechik, Mohd Mustafa Awang</au><au>Razali, Rosmizan Ahmad</au><au>Shamsul, Mohd Shahril Mohd</au><au>Ramdani, Agus</au><au>Savalas, Lalu Rudyat Telly</au><au>Susilawati</au><au>Hadisaputra, Saprizal</au><au>Doyan, Aris</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Radiomics study of lung tumor volume segmentation technique in contrast-enhanced Computed Tomography (CT) thorax images: A comparative study</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-04-28</date><risdate>2023</risdate><volume>2619</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Medical image segmentation is crucial in extracting information regarding tumour characteristics including lung cancer. To obtain the information of macroscopic (tumour volume) and microscopic features (radiomics study), image segmentation process is required. Various kind of advance segmentation algorithms are available nowadays yet there is no so-called ‘the best segmentation technique’ that can be used in medical imaging modalities. This study compared manual slice by slice segmentation and semi-automated segmentation of lung tumour volume measurement with radiomics features of shape analysis and first-order statistical measures of texture analysis. Manual slice by slice delineation and region-growing semi-automated segmentation using 3D slicer software was performed on 45 sets of contrast-enhanced Computed Tomography (CT) Thorax images downloaded from The Cancer Imaging Archive (TCIA). The results showed that the manually and semi-automated segmentation has high similarity with volume Hausdorff distance (AHD) measured as 1.02 ± 0.71mm, high Dice similarity coefficient (DSC) value is 0.83 ± 0.05 and p value is 0.997; p &gt; 0.05. Overall, 84.62% of the features under shape analysis and 33.33% of first-order statistical measures of texture analysis are no significant difference between these two segmentation methods. In conclusion, semiautomated segmentation can be perform as good as manual segmentation in lung tumour volume measurement, especially in terms of the ability to extract the shape order features of the lung tumour radiomics analysis.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0122531</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2619 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2807140373
source AIP Journals Complete
subjects Algorithms
Automation
Comparative studies
Computed tomography
Image contrast
Image enhancement
Image segmentation
Medical imaging
Metric space
Radiomics
Texture
Thorax
Tomography
Tumors
Volume measurement
title Radiomics study of lung tumor volume segmentation technique in contrast-enhanced Computed Tomography (CT) thorax images: A comparative study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Radiomics%20study%20of%20lung%20tumor%20volume%20segmentation%20technique%20in%20contrast-enhanced%20Computed%20Tomography%20(CT)%20thorax%20images:%20A%20comparative%20study&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Yunus,%20Mardhiyati%20Mohd&rft.date=2023-04-28&rft.volume=2619&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0122531&rft_dat=%3Cproquest_scita%3E2807140373%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807140373&rft_id=info:pmid/&rfr_iscdi=true