Performance of adaptive radial basis functional neural network for inverter control

A single phase grid connected photovoltaic (PV) system is susceptible to a number of power quality (PQ) problems, including power factor, harmonic current, voltage fluctuations, and load unbalance. Compensation is needed to address these PQ concerns. In this study, a single phase shunt active power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrical engineering 2023-04, Vol.105 (2), p.921-933
Hauptverfasser: Singh, Alka, Pandey, Amarendra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 933
container_issue 2
container_start_page 921
container_title Electrical engineering
container_volume 105
creator Singh, Alka
Pandey, Amarendra
description A single phase grid connected photovoltaic (PV) system is susceptible to a number of power quality (PQ) problems, including power factor, harmonic current, voltage fluctuations, and load unbalance. Compensation is needed to address these PQ concerns. In this study, a single phase shunt active power filter is presented to handle power quality issues using novel and straight forward radial basis function neural network (RBFNN) controller architecture and to ensure maximum power flow between PV and grid using a maximum power point tracker control technique. The design takes into account a single neuron in the hidden layer, and the network is trained on-line to be suitable for inverter control to reduce power quality (PQ) issues. The newly developed controller has a single input for the load current and is able to isolate the fundamental component of the current. Tracking is fast and achieved within one cycle. The trained model shows exceptional results for load compensation under various loading conditions. With the suggested RBFNN controller, both findings from simulation and from experiments have been shown to work.
doi_str_mv 10.1007/s00202-022-01706-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807041587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807041587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-25c81da7e727b963713b4f06ac6dcab917f27a02f110ccf63a96af1baa155a493</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9WZpG3aoyz-gwUF9RymaSJdd5s1aVf89sat4M3D8JjhvcfwY-wc4RIB1FUEECAyEGlQQZnhAZthLtOaV-qQzaDOq0zVAo_ZSYwrAJBFnc_Y85MNzocN9cZy7zi1tB26neWB2o7WvKHYRe7G3gyd79Oht2PYy_DpwztPWd71OxsGG7jx_RD8-pQdOVpHe_arc_Z6e_OyuM-Wj3cPi-tlZiTWQyYKU2FLyiqhmrqUCmWTOyjJlK2hpkblhCIQDhGMcaWkuiSHDREWBeW1nLOLqXcb_Mdo46BXfgzpyahFBQpyLCqVXGJymeBjDNbpbeg2FL40gv6Bpyd4OsHTe3gaU0hOoZjM_ZsNf9X_pL4BeZ5y0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807041587</pqid></control><display><type>article</type><title>Performance of adaptive radial basis functional neural network for inverter control</title><source>Springer Nature - Complete Springer Journals</source><creator>Singh, Alka ; Pandey, Amarendra</creator><creatorcontrib>Singh, Alka ; Pandey, Amarendra</creatorcontrib><description>A single phase grid connected photovoltaic (PV) system is susceptible to a number of power quality (PQ) problems, including power factor, harmonic current, voltage fluctuations, and load unbalance. Compensation is needed to address these PQ concerns. In this study, a single phase shunt active power filter is presented to handle power quality issues using novel and straight forward radial basis function neural network (RBFNN) controller architecture and to ensure maximum power flow between PV and grid using a maximum power point tracker control technique. The design takes into account a single neuron in the hidden layer, and the network is trained on-line to be suitable for inverter control to reduce power quality (PQ) issues. The newly developed controller has a single input for the load current and is able to isolate the fundamental component of the current. Tracking is fast and achieved within one cycle. The trained model shows exceptional results for load compensation under various loading conditions. With the suggested RBFNN controller, both findings from simulation and from experiments have been shown to work.</description><identifier>ISSN: 0948-7921</identifier><identifier>EISSN: 1432-0487</identifier><identifier>DOI: 10.1007/s00202-022-01706-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive control ; Compensation ; Controllers ; Economics and Management ; Electrical Engineering ; Electrical Machines and Networks ; Energy Policy ; Engineering ; Inverters ; Maximum power ; Neural networks ; Original Paper ; Photovoltaic cells ; Power Electronics ; Power factor ; Power flow ; Radial basis function</subject><ispartof>Electrical engineering, 2023-04, Vol.105 (2), p.921-933</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-25c81da7e727b963713b4f06ac6dcab917f27a02f110ccf63a96af1baa155a493</citedby><cites>FETCH-LOGICAL-c319t-25c81da7e727b963713b4f06ac6dcab917f27a02f110ccf63a96af1baa155a493</cites><orcidid>0000-0002-5002-4022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00202-022-01706-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00202-022-01706-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Singh, Alka</creatorcontrib><creatorcontrib>Pandey, Amarendra</creatorcontrib><title>Performance of adaptive radial basis functional neural network for inverter control</title><title>Electrical engineering</title><addtitle>Electr Eng</addtitle><description>A single phase grid connected photovoltaic (PV) system is susceptible to a number of power quality (PQ) problems, including power factor, harmonic current, voltage fluctuations, and load unbalance. Compensation is needed to address these PQ concerns. In this study, a single phase shunt active power filter is presented to handle power quality issues using novel and straight forward radial basis function neural network (RBFNN) controller architecture and to ensure maximum power flow between PV and grid using a maximum power point tracker control technique. The design takes into account a single neuron in the hidden layer, and the network is trained on-line to be suitable for inverter control to reduce power quality (PQ) issues. The newly developed controller has a single input for the load current and is able to isolate the fundamental component of the current. Tracking is fast and achieved within one cycle. The trained model shows exceptional results for load compensation under various loading conditions. With the suggested RBFNN controller, both findings from simulation and from experiments have been shown to work.</description><subject>Adaptive control</subject><subject>Compensation</subject><subject>Controllers</subject><subject>Economics and Management</subject><subject>Electrical Engineering</subject><subject>Electrical Machines and Networks</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Inverters</subject><subject>Maximum power</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Photovoltaic cells</subject><subject>Power Electronics</subject><subject>Power factor</subject><subject>Power flow</subject><subject>Radial basis function</subject><issn>0948-7921</issn><issn>1432-0487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9WZpG3aoyz-gwUF9RymaSJdd5s1aVf89sat4M3D8JjhvcfwY-wc4RIB1FUEECAyEGlQQZnhAZthLtOaV-qQzaDOq0zVAo_ZSYwrAJBFnc_Y85MNzocN9cZy7zi1tB26neWB2o7WvKHYRe7G3gyd79Oht2PYy_DpwztPWd71OxsGG7jx_RD8-pQdOVpHe_arc_Z6e_OyuM-Wj3cPi-tlZiTWQyYKU2FLyiqhmrqUCmWTOyjJlK2hpkblhCIQDhGMcaWkuiSHDREWBeW1nLOLqXcb_Mdo46BXfgzpyahFBQpyLCqVXGJymeBjDNbpbeg2FL40gv6Bpyd4OsHTe3gaU0hOoZjM_ZsNf9X_pL4BeZ5y0A</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Singh, Alka</creator><creator>Pandey, Amarendra</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5002-4022</orcidid></search><sort><creationdate>20230401</creationdate><title>Performance of adaptive radial basis functional neural network for inverter control</title><author>Singh, Alka ; Pandey, Amarendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-25c81da7e727b963713b4f06ac6dcab917f27a02f110ccf63a96af1baa155a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Compensation</topic><topic>Controllers</topic><topic>Economics and Management</topic><topic>Electrical Engineering</topic><topic>Electrical Machines and Networks</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Inverters</topic><topic>Maximum power</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Photovoltaic cells</topic><topic>Power Electronics</topic><topic>Power factor</topic><topic>Power flow</topic><topic>Radial basis function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Alka</creatorcontrib><creatorcontrib>Pandey, Amarendra</creatorcontrib><collection>CrossRef</collection><jtitle>Electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Alka</au><au>Pandey, Amarendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of adaptive radial basis functional neural network for inverter control</atitle><jtitle>Electrical engineering</jtitle><stitle>Electr Eng</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>105</volume><issue>2</issue><spage>921</spage><epage>933</epage><pages>921-933</pages><issn>0948-7921</issn><eissn>1432-0487</eissn><abstract>A single phase grid connected photovoltaic (PV) system is susceptible to a number of power quality (PQ) problems, including power factor, harmonic current, voltage fluctuations, and load unbalance. Compensation is needed to address these PQ concerns. In this study, a single phase shunt active power filter is presented to handle power quality issues using novel and straight forward radial basis function neural network (RBFNN) controller architecture and to ensure maximum power flow between PV and grid using a maximum power point tracker control technique. The design takes into account a single neuron in the hidden layer, and the network is trained on-line to be suitable for inverter control to reduce power quality (PQ) issues. The newly developed controller has a single input for the load current and is able to isolate the fundamental component of the current. Tracking is fast and achieved within one cycle. The trained model shows exceptional results for load compensation under various loading conditions. With the suggested RBFNN controller, both findings from simulation and from experiments have been shown to work.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00202-022-01706-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5002-4022</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0948-7921
ispartof Electrical engineering, 2023-04, Vol.105 (2), p.921-933
issn 0948-7921
1432-0487
language eng
recordid cdi_proquest_journals_2807041587
source Springer Nature - Complete Springer Journals
subjects Adaptive control
Compensation
Controllers
Economics and Management
Electrical Engineering
Electrical Machines and Networks
Energy Policy
Engineering
Inverters
Maximum power
Neural networks
Original Paper
Photovoltaic cells
Power Electronics
Power factor
Power flow
Radial basis function
title Performance of adaptive radial basis functional neural network for inverter control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20adaptive%20radial%20basis%20functional%20neural%20network%20for%20inverter%20control&rft.jtitle=Electrical%20engineering&rft.au=Singh,%20Alka&rft.date=2023-04-01&rft.volume=105&rft.issue=2&rft.spage=921&rft.epage=933&rft.pages=921-933&rft.issn=0948-7921&rft.eissn=1432-0487&rft_id=info:doi/10.1007/s00202-022-01706-1&rft_dat=%3Cproquest_cross%3E2807041587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807041587&rft_id=info:pmid/&rfr_iscdi=true