Using Stochastically Perturbed Parameterizations to Represent Model Uncertainty. Part I: Implementation and Parameter Sensitivity
Accurately representing model-based sources of uncertainty is essential for the development of reliable ensemble prediction systems for NWP applications. Uncertainties in discretizations, algorithmic approximations, and diabatic and unresolved processes combine to influence forecast skill in a flow-...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2022-11, Vol.150 (11), p.2829-2858 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2858 |
---|---|
container_issue | 11 |
container_start_page | 2829 |
container_title | Monthly weather review |
container_volume | 150 |
creator | McTaggart-Cowan, Ron Separovic, Leo Aider, Rabah Charron, Martin Desgagné, Michel Houtekamer, Pieter L. Paquin-Ricard, Danahé Vaillancourt, Paul A. Zadra, Ayrton |
description | Accurately representing model-based sources of uncertainty is essential for the development of reliable ensemble prediction systems for NWP applications. Uncertainties in discretizations, algorithmic approximations, and diabatic and unresolved processes combine to influence forecast skill in a flow-dependent way. An emerging approach designed to provide a process-level representation of these potential error sources, stochastically perturbed parameterizations (SPP), is introduced into the Canadian operational Global Ensemble Prediction System. This implementation extends the SPP technique beyond its typical application to free parameters in the physics suite by sampling uncertainty both within the dynamical core and at the formulation level using “error models” when multiple physical closures are available. Because SPP perturbs components within the model, internal consistency is ensured and conservation properties are not affected. The full SPP scheme is shown to increase ensemble spread to keep pace with error growth on a global scale. The sensitivity of the ensemble to each independently perturbed “element” is then assessed, with those responsible for the bulk of the response analyzed in more detail. Perturbations to surface exchange coefficients and the turbulent mixing length have a leading impact on near-surface statistics. Aloft, a tropically focused error model representing uncertainty in the advection scheme is found to initiate growing perturbations on the subtropical jet that lead to forecast improvements at higher latitudes. The results of Part I suggest that SPP has the potential to serve as a reliable representation of model uncertainty for ensemble NWP applications. |
doi_str_mv | 10.1175/MWR-D-21-0315.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807029610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807029610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-8e2591e63374e79ae2e1647e21e9ab13e43fcbf0f585feffc3ca3ae91183a56f3</originalsourceid><addsrcrecordid>eNpNkEtPAjEURhujiYiu3TZxPdDbztOdAR8kEAlIXDZluNWSmQ62xWTc-c8dxIWruznnu8kh5BrYACBLhrPXRTSOOERMQDKAE9KDhLOIxYU4JT3GeBaxNI7PyYX3W8ZYmsa8R75X3tg3ugxN-a58MKWqqpbO0YW9W-OGzpVTNQZ05ksF01hPQ0MXuHPo0QY6azZY0ZUtO0EZG9rBwQh0cksn9a7CuoN-ParsvzG6ROtNMJ8mtJfkTKvK49Xf7ZPVw_3L6CmaPj9ORnfTqOQxC1GOPCkAUyGyGLNCIUdI4ww5YKHWIDAWulxrppM80ah1KUolFBYAuVBJqkWf3Bx3d6752KMPctvsne1eSp6zjPEiBdZRwyNVusZ7h1runKmVayUweegsu85yLDnIQ2cJ4geDY3PY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807029610</pqid></control><display><type>article</type><title>Using Stochastically Perturbed Parameterizations to Represent Model Uncertainty. Part I: Implementation and Parameter Sensitivity</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>McTaggart-Cowan, Ron ; Separovic, Leo ; Aider, Rabah ; Charron, Martin ; Desgagné, Michel ; Houtekamer, Pieter L. ; Paquin-Ricard, Danahé ; Vaillancourt, Paul A. ; Zadra, Ayrton</creator><creatorcontrib>McTaggart-Cowan, Ron ; Separovic, Leo ; Aider, Rabah ; Charron, Martin ; Desgagné, Michel ; Houtekamer, Pieter L. ; Paquin-Ricard, Danahé ; Vaillancourt, Paul A. ; Zadra, Ayrton</creatorcontrib><description>Accurately representing model-based sources of uncertainty is essential for the development of reliable ensemble prediction systems for NWP applications. Uncertainties in discretizations, algorithmic approximations, and diabatic and unresolved processes combine to influence forecast skill in a flow-dependent way. An emerging approach designed to provide a process-level representation of these potential error sources, stochastically perturbed parameterizations (SPP), is introduced into the Canadian operational Global Ensemble Prediction System. This implementation extends the SPP technique beyond its typical application to free parameters in the physics suite by sampling uncertainty both within the dynamical core and at the formulation level using “error models” when multiple physical closures are available. Because SPP perturbs components within the model, internal consistency is ensured and conservation properties are not affected. The full SPP scheme is shown to increase ensemble spread to keep pace with error growth on a global scale. The sensitivity of the ensemble to each independently perturbed “element” is then assessed, with those responsible for the bulk of the response analyzed in more detail. Perturbations to surface exchange coefficients and the turbulent mixing length have a leading impact on near-surface statistics. Aloft, a tropically focused error model representing uncertainty in the advection scheme is found to initiate growing perturbations on the subtropical jet that lead to forecast improvements at higher latitudes. The results of Part I suggest that SPP has the potential to serve as a reliable representation of model uncertainty for ensemble NWP applications.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-21-0315.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Advection ; Algorithms ; Coefficients ; Conservation ; Data assimilation ; Ensemble forecasting ; Error analysis ; Exchange coefficients ; Forecast errors ; Mathematical models ; Mixing length ; Modelling ; Parameter sensitivity ; Parameter uncertainty ; Parameterization ; Parameters ; Perturbation ; Perturbations ; Physics ; Prediction models ; Representations ; Statistical methods ; Turbulent mixing ; Uncertainty</subject><ispartof>Monthly weather review, 2022-11, Vol.150 (11), p.2829-2858</ispartof><rights>Copyright American Meteorological Society 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c240t-8e2591e63374e79ae2e1647e21e9ab13e43fcbf0f585feffc3ca3ae91183a56f3</citedby><orcidid>0000-0002-3092-4365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3667,27903,27904</link.rule.ids></links><search><creatorcontrib>McTaggart-Cowan, Ron</creatorcontrib><creatorcontrib>Separovic, Leo</creatorcontrib><creatorcontrib>Aider, Rabah</creatorcontrib><creatorcontrib>Charron, Martin</creatorcontrib><creatorcontrib>Desgagné, Michel</creatorcontrib><creatorcontrib>Houtekamer, Pieter L.</creatorcontrib><creatorcontrib>Paquin-Ricard, Danahé</creatorcontrib><creatorcontrib>Vaillancourt, Paul A.</creatorcontrib><creatorcontrib>Zadra, Ayrton</creatorcontrib><title>Using Stochastically Perturbed Parameterizations to Represent Model Uncertainty. Part I: Implementation and Parameter Sensitivity</title><title>Monthly weather review</title><description>Accurately representing model-based sources of uncertainty is essential for the development of reliable ensemble prediction systems for NWP applications. Uncertainties in discretizations, algorithmic approximations, and diabatic and unresolved processes combine to influence forecast skill in a flow-dependent way. An emerging approach designed to provide a process-level representation of these potential error sources, stochastically perturbed parameterizations (SPP), is introduced into the Canadian operational Global Ensemble Prediction System. This implementation extends the SPP technique beyond its typical application to free parameters in the physics suite by sampling uncertainty both within the dynamical core and at the formulation level using “error models” when multiple physical closures are available. Because SPP perturbs components within the model, internal consistency is ensured and conservation properties are not affected. The full SPP scheme is shown to increase ensemble spread to keep pace with error growth on a global scale. The sensitivity of the ensemble to each independently perturbed “element” is then assessed, with those responsible for the bulk of the response analyzed in more detail. Perturbations to surface exchange coefficients and the turbulent mixing length have a leading impact on near-surface statistics. Aloft, a tropically focused error model representing uncertainty in the advection scheme is found to initiate growing perturbations on the subtropical jet that lead to forecast improvements at higher latitudes. The results of Part I suggest that SPP has the potential to serve as a reliable representation of model uncertainty for ensemble NWP applications.</description><subject>Advection</subject><subject>Algorithms</subject><subject>Coefficients</subject><subject>Conservation</subject><subject>Data assimilation</subject><subject>Ensemble forecasting</subject><subject>Error analysis</subject><subject>Exchange coefficients</subject><subject>Forecast errors</subject><subject>Mathematical models</subject><subject>Mixing length</subject><subject>Modelling</subject><subject>Parameter sensitivity</subject><subject>Parameter uncertainty</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Perturbations</subject><subject>Physics</subject><subject>Prediction models</subject><subject>Representations</subject><subject>Statistical methods</subject><subject>Turbulent mixing</subject><subject>Uncertainty</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkEtPAjEURhujiYiu3TZxPdDbztOdAR8kEAlIXDZluNWSmQ62xWTc-c8dxIWruznnu8kh5BrYACBLhrPXRTSOOERMQDKAE9KDhLOIxYU4JT3GeBaxNI7PyYX3W8ZYmsa8R75X3tg3ugxN-a58MKWqqpbO0YW9W-OGzpVTNQZ05ksF01hPQ0MXuHPo0QY6azZY0ZUtO0EZG9rBwQh0cksn9a7CuoN-ParsvzG6ROtNMJ8mtJfkTKvK49Xf7ZPVw_3L6CmaPj9ORnfTqOQxC1GOPCkAUyGyGLNCIUdI4ww5YKHWIDAWulxrppM80ah1KUolFBYAuVBJqkWf3Bx3d6752KMPctvsne1eSp6zjPEiBdZRwyNVusZ7h1runKmVayUweegsu85yLDnIQ2cJ4geDY3PY</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>McTaggart-Cowan, Ron</creator><creator>Separovic, Leo</creator><creator>Aider, Rabah</creator><creator>Charron, Martin</creator><creator>Desgagné, Michel</creator><creator>Houtekamer, Pieter L.</creator><creator>Paquin-Ricard, Danahé</creator><creator>Vaillancourt, Paul A.</creator><creator>Zadra, Ayrton</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-3092-4365</orcidid></search><sort><creationdate>202211</creationdate><title>Using Stochastically Perturbed Parameterizations to Represent Model Uncertainty. Part I: Implementation and Parameter Sensitivity</title><author>McTaggart-Cowan, Ron ; Separovic, Leo ; Aider, Rabah ; Charron, Martin ; Desgagné, Michel ; Houtekamer, Pieter L. ; Paquin-Ricard, Danahé ; Vaillancourt, Paul A. ; Zadra, Ayrton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-8e2591e63374e79ae2e1647e21e9ab13e43fcbf0f585feffc3ca3ae91183a56f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advection</topic><topic>Algorithms</topic><topic>Coefficients</topic><topic>Conservation</topic><topic>Data assimilation</topic><topic>Ensemble forecasting</topic><topic>Error analysis</topic><topic>Exchange coefficients</topic><topic>Forecast errors</topic><topic>Mathematical models</topic><topic>Mixing length</topic><topic>Modelling</topic><topic>Parameter sensitivity</topic><topic>Parameter uncertainty</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Perturbations</topic><topic>Physics</topic><topic>Prediction models</topic><topic>Representations</topic><topic>Statistical methods</topic><topic>Turbulent mixing</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McTaggart-Cowan, Ron</creatorcontrib><creatorcontrib>Separovic, Leo</creatorcontrib><creatorcontrib>Aider, Rabah</creatorcontrib><creatorcontrib>Charron, Martin</creatorcontrib><creatorcontrib>Desgagné, Michel</creatorcontrib><creatorcontrib>Houtekamer, Pieter L.</creatorcontrib><creatorcontrib>Paquin-Ricard, Danahé</creatorcontrib><creatorcontrib>Vaillancourt, Paul A.</creatorcontrib><creatorcontrib>Zadra, Ayrton</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McTaggart-Cowan, Ron</au><au>Separovic, Leo</au><au>Aider, Rabah</au><au>Charron, Martin</au><au>Desgagné, Michel</au><au>Houtekamer, Pieter L.</au><au>Paquin-Ricard, Danahé</au><au>Vaillancourt, Paul A.</au><au>Zadra, Ayrton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Stochastically Perturbed Parameterizations to Represent Model Uncertainty. Part I: Implementation and Parameter Sensitivity</atitle><jtitle>Monthly weather review</jtitle><date>2022-11</date><risdate>2022</risdate><volume>150</volume><issue>11</issue><spage>2829</spage><epage>2858</epage><pages>2829-2858</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>Accurately representing model-based sources of uncertainty is essential for the development of reliable ensemble prediction systems for NWP applications. Uncertainties in discretizations, algorithmic approximations, and diabatic and unresolved processes combine to influence forecast skill in a flow-dependent way. An emerging approach designed to provide a process-level representation of these potential error sources, stochastically perturbed parameterizations (SPP), is introduced into the Canadian operational Global Ensemble Prediction System. This implementation extends the SPP technique beyond its typical application to free parameters in the physics suite by sampling uncertainty both within the dynamical core and at the formulation level using “error models” when multiple physical closures are available. Because SPP perturbs components within the model, internal consistency is ensured and conservation properties are not affected. The full SPP scheme is shown to increase ensemble spread to keep pace with error growth on a global scale. The sensitivity of the ensemble to each independently perturbed “element” is then assessed, with those responsible for the bulk of the response analyzed in more detail. Perturbations to surface exchange coefficients and the turbulent mixing length have a leading impact on near-surface statistics. Aloft, a tropically focused error model representing uncertainty in the advection scheme is found to initiate growing perturbations on the subtropical jet that lead to forecast improvements at higher latitudes. The results of Part I suggest that SPP has the potential to serve as a reliable representation of model uncertainty for ensemble NWP applications.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-21-0315.1</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-3092-4365</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-0644 |
ispartof | Monthly weather review, 2022-11, Vol.150 (11), p.2829-2858 |
issn | 0027-0644 1520-0493 |
language | eng |
recordid | cdi_proquest_journals_2807029610 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Advection Algorithms Coefficients Conservation Data assimilation Ensemble forecasting Error analysis Exchange coefficients Forecast errors Mathematical models Mixing length Modelling Parameter sensitivity Parameter uncertainty Parameterization Parameters Perturbation Perturbations Physics Prediction models Representations Statistical methods Turbulent mixing Uncertainty |
title | Using Stochastically Perturbed Parameterizations to Represent Model Uncertainty. Part I: Implementation and Parameter Sensitivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Stochastically%20Perturbed%20Parameterizations%20to%20Represent%20Model%20Uncertainty.%20Part%20I:%20Implementation%20and%20Parameter%20Sensitivity&rft.jtitle=Monthly%20weather%20review&rft.au=McTaggart-Cowan,%20Ron&rft.date=2022-11&rft.volume=150&rft.issue=11&rft.spage=2829&rft.epage=2858&rft.pages=2829-2858&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-21-0315.1&rft_dat=%3Cproquest_cross%3E2807029610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807029610&rft_id=info:pmid/&rfr_iscdi=true |