Classification of Image Spam Using Convolution Neural Network

Image identification and classification is a basic issue in the fields of mainframe visualization and pattern recognition. In today’s world, a great deal of unwanted material is distributed via the Internet. The unwanted information contained inside images, i.e., image spam, endangers email-based co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Traitement du signal 2022-02, Vol.39 (1), p.363-369
Hauptverfasser: Metlapalli, Ayyappa Chakravarthi, Muthusamy, Thillaikarasi, Battula, Bhanu Prakash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue 1
container_start_page 363
container_title Traitement du signal
container_volume 39
creator Metlapalli, Ayyappa Chakravarthi
Muthusamy, Thillaikarasi
Battula, Bhanu Prakash
description Image identification and classification is a basic issue in the fields of mainframe visualization and pattern recognition. In today’s world, a great deal of unwanted material is distributed via the Internet. The unwanted information contained inside images, i.e., image spam, endangers email-based communication systems. Unlike textural spam, image spam is difficult to be detected by many machine learning (ML) techniques. This paper intends to investigate and evaluate four deep learning (DL) methods that may be useful for image spam identification. Firstly, neural networks, especially deep neural networks, were trained on various image features. Their resilience was measured on an enhanced dataset, which was created specifically to outwit existing image spam detection methods. Next, a convolution neural network (CNN) was designed, and verified through experiments. Experimental results show that our novel approach for image spam identification outshines other current techniques in the field.
doi_str_mv 10.18280/ts.390138
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807021659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807021659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-998b04204006977ae3a39c1b53a976d039cc220ad528dcc1151f664ff2280d783</originalsourceid><addsrcrecordid>eNotkE9LxDAQxYMoWNa9-AkK3oSuk6RJk4MHKf5ZWPSgew7ZtFm6ts2apIrf3rB1Lo9hfrzHPISuMaywIALuYlhRCZiKM5RhyUTBOIhzlEHFWQGA5SVahnCANBSXnNMM3de9DqGzndGxc2PubL4e9L7N3496yLehG_d57cZv10-n-2s7ed0niT_Of16hC6v70C7_dYG2T48f9UuxeXte1w-bwhBWxkJKsYOSQAnAZVXplmoqDd4xqmXFG0iLIQR0w4hojMGYYct5aS1JXzWVoAt0M_sevfua2hDVwU1-TJEqERUQzJlM1O1MGe9C8K1VR98N2v8qDOrUkIpBzQ3RPzurVnc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807021659</pqid></control><display><type>article</type><title>Classification of Image Spam Using Convolution Neural Network</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Metlapalli, Ayyappa Chakravarthi ; Muthusamy, Thillaikarasi ; Battula, Bhanu Prakash</creator><creatorcontrib>Metlapalli, Ayyappa Chakravarthi ; Muthusamy, Thillaikarasi ; Battula, Bhanu Prakash</creatorcontrib><description>Image identification and classification is a basic issue in the fields of mainframe visualization and pattern recognition. In today’s world, a great deal of unwanted material is distributed via the Internet. The unwanted information contained inside images, i.e., image spam, endangers email-based communication systems. Unlike textural spam, image spam is difficult to be detected by many machine learning (ML) techniques. This paper intends to investigate and evaluate four deep learning (DL) methods that may be useful for image spam identification. Firstly, neural networks, especially deep neural networks, were trained on various image features. Their resilience was measured on an enhanced dataset, which was created specifically to outwit existing image spam detection methods. Next, a convolution neural network (CNN) was designed, and verified through experiments. Experimental results show that our novel approach for image spam identification outshines other current techniques in the field.</description><identifier>ISSN: 0765-0019</identifier><identifier>EISSN: 1958-5608</identifier><identifier>DOI: 10.18280/ts.390138</identifier><language>eng</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Accuracy ; Artificial neural networks ; Classification ; Communications systems ; Cybercrime ; Datasets ; Deep learning ; Electronic mail systems ; Image classification ; Image enhancement ; Machine learning ; Mainframes ; Neural networks ; Pattern recognition ; Spamming ; Support vector machines</subject><ispartof>Traitement du signal, 2022-02, Vol.39 (1), p.363-369</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Metlapalli, Ayyappa Chakravarthi</creatorcontrib><creatorcontrib>Muthusamy, Thillaikarasi</creatorcontrib><creatorcontrib>Battula, Bhanu Prakash</creatorcontrib><title>Classification of Image Spam Using Convolution Neural Network</title><title>Traitement du signal</title><description>Image identification and classification is a basic issue in the fields of mainframe visualization and pattern recognition. In today’s world, a great deal of unwanted material is distributed via the Internet. The unwanted information contained inside images, i.e., image spam, endangers email-based communication systems. Unlike textural spam, image spam is difficult to be detected by many machine learning (ML) techniques. This paper intends to investigate and evaluate four deep learning (DL) methods that may be useful for image spam identification. Firstly, neural networks, especially deep neural networks, were trained on various image features. Their resilience was measured on an enhanced dataset, which was created specifically to outwit existing image spam detection methods. Next, a convolution neural network (CNN) was designed, and verified through experiments. Experimental results show that our novel approach for image spam identification outshines other current techniques in the field.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Communications systems</subject><subject>Cybercrime</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Electronic mail systems</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Machine learning</subject><subject>Mainframes</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Spamming</subject><subject>Support vector machines</subject><issn>0765-0019</issn><issn>1958-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkE9LxDAQxYMoWNa9-AkK3oSuk6RJk4MHKf5ZWPSgew7ZtFm6ts2apIrf3rB1Lo9hfrzHPISuMaywIALuYlhRCZiKM5RhyUTBOIhzlEHFWQGA5SVahnCANBSXnNMM3de9DqGzndGxc2PubL4e9L7N3496yLehG_d57cZv10-n-2s7ed0niT_Of16hC6v70C7_dYG2T48f9UuxeXte1w-bwhBWxkJKsYOSQAnAZVXplmoqDd4xqmXFG0iLIQR0w4hojMGYYct5aS1JXzWVoAt0M_sevfua2hDVwU1-TJEqERUQzJlM1O1MGe9C8K1VR98N2v8qDOrUkIpBzQ3RPzurVnc</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Metlapalli, Ayyappa Chakravarthi</creator><creator>Muthusamy, Thillaikarasi</creator><creator>Battula, Bhanu Prakash</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220201</creationdate><title>Classification of Image Spam Using Convolution Neural Network</title><author>Metlapalli, Ayyappa Chakravarthi ; Muthusamy, Thillaikarasi ; Battula, Bhanu Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-998b04204006977ae3a39c1b53a976d039cc220ad528dcc1151f664ff2280d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Communications systems</topic><topic>Cybercrime</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Electronic mail systems</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Machine learning</topic><topic>Mainframes</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Spamming</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metlapalli, Ayyappa Chakravarthi</creatorcontrib><creatorcontrib>Muthusamy, Thillaikarasi</creatorcontrib><creatorcontrib>Battula, Bhanu Prakash</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Traitement du signal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metlapalli, Ayyappa Chakravarthi</au><au>Muthusamy, Thillaikarasi</au><au>Battula, Bhanu Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Image Spam Using Convolution Neural Network</atitle><jtitle>Traitement du signal</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>39</volume><issue>1</issue><spage>363</spage><epage>369</epage><pages>363-369</pages><issn>0765-0019</issn><eissn>1958-5608</eissn><abstract>Image identification and classification is a basic issue in the fields of mainframe visualization and pattern recognition. In today’s world, a great deal of unwanted material is distributed via the Internet. The unwanted information contained inside images, i.e., image spam, endangers email-based communication systems. Unlike textural spam, image spam is difficult to be detected by many machine learning (ML) techniques. This paper intends to investigate and evaluate four deep learning (DL) methods that may be useful for image spam identification. Firstly, neural networks, especially deep neural networks, were trained on various image features. Their resilience was measured on an enhanced dataset, which was created specifically to outwit existing image spam detection methods. Next, a convolution neural network (CNN) was designed, and verified through experiments. Experimental results show that our novel approach for image spam identification outshines other current techniques in the field.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ts.390138</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0765-0019
ispartof Traitement du signal, 2022-02, Vol.39 (1), p.363-369
issn 0765-0019
1958-5608
language eng
recordid cdi_proquest_journals_2807021659
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Artificial neural networks
Classification
Communications systems
Cybercrime
Datasets
Deep learning
Electronic mail systems
Image classification
Image enhancement
Machine learning
Mainframes
Neural networks
Pattern recognition
Spamming
Support vector machines
title Classification of Image Spam Using Convolution Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Image%20Spam%20Using%20Convolution%20Neural%20Network&rft.jtitle=Traitement%20du%20signal&rft.au=Metlapalli,%20Ayyappa%20Chakravarthi&rft.date=2022-02-01&rft.volume=39&rft.issue=1&rft.spage=363&rft.epage=369&rft.pages=363-369&rft.issn=0765-0019&rft.eissn=1958-5608&rft_id=info:doi/10.18280/ts.390138&rft_dat=%3Cproquest_cross%3E2807021659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807021659&rft_id=info:pmid/&rfr_iscdi=true