Infrared Thermal Image Enhancement in Cold Spot Detection of Condenser Air Ingress
The cold spot identification approach is limited due to the lack of high-resolution infrared thermal images. To solve the problem, infrared thermal images are enhanced using several ways. To improve the thermal images for cold spot detection, researchers used CLAHE, the Canny edge detection method,...
Gespeichert in:
Veröffentlicht in: | Traitement du signal 2022-02, Vol.39 (1), p.323-329 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 329 |
---|---|
container_issue | 1 |
container_start_page | 323 |
container_title | Traitement du signal |
container_volume | 39 |
creator | Sathyan, Neethu M Karthikeyan, Sashi Rekha |
description | The cold spot identification approach is limited due to the lack of high-resolution infrared thermal images. To solve the problem, infrared thermal images are enhanced using several ways. To improve the thermal images for cold spot detection, researchers used CLAHE, the Canny edge detection method, and deep learning approaches based on denoising autoencoder. The comparison of several enhancement methods based on quality metric factors leads to the selection of the best method. The noise in the Infrared (IR) image is reduced by using a high-resolution autoencoder. The ability to convert a 32 × 32 infrared image to a 64 x 64 resolution image is demonstrated. This study presents an information visibility restoration technique that includes stacked Denoising Autoencoder (DAE) to improve anomalous areas in the condenser's infrared thermal images keeping in mind the current popularity of deep learning models in machine learning. The use of a deep learning autoencoder improves structural similarity index of the image, which is comprehensive. The structural similarity index of the image is improved when a deep learning autoencoder is used. In comparison to CLAHE and the Canny edge detection approach, substantial research indicates that the High-resolution autoencoder is best suited for IR image improvement. Thermal imaging, the suggested technique can improve anomalies without sacrificing crucial information when compared to the straight discriminant analysis. |
doi_str_mv | 10.18280/ts.390134 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807021122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807021122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-9a685ade9fabf9e1e6f695fbbbac7b6738e88b9b88ddb74d1e5654097ca19533</originalsourceid><addsrcrecordid>eNotkEFLAzEUhIMoWLQXf0HAm7A12WyyybHUqgsFQXsPyeal3dJNapIe_Pcu1rkMDMM83ofQAyULKmtJnkteMEUoa67QjCouKy6IvEYz0gpeEULVLZrnfCCTGG2EYDP02QWfTAKHt3tIoznibjQ7wOuwN6GHEULBQ8CreHT46xQLfoECfRliwNFPcXAQMiS8HBLuwi5Bzvfoxptjhvm_36Ht63q7eq82H2_darmpeiqbUikjJDcOlDfWK6AgvFDcW2tN31rRMglSWmWldM62jaPABW-Iansz_cbYHXq8zJ5S_D5DLvoQzylMF_XEoiU1pXU9tZ4urT7FnBN4fUrDaNKPpkT_UdMl6ws19gv_Q18G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807021122</pqid></control><display><type>article</type><title>Infrared Thermal Image Enhancement in Cold Spot Detection of Condenser Air Ingress</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sathyan, Neethu M ; Karthikeyan, Sashi Rekha</creator><creatorcontrib>Sathyan, Neethu M ; Karthikeyan, Sashi Rekha</creatorcontrib><description>The cold spot identification approach is limited due to the lack of high-resolution infrared thermal images. To solve the problem, infrared thermal images are enhanced using several ways. To improve the thermal images for cold spot detection, researchers used CLAHE, the Canny edge detection method, and deep learning approaches based on denoising autoencoder. The comparison of several enhancement methods based on quality metric factors leads to the selection of the best method. The noise in the Infrared (IR) image is reduced by using a high-resolution autoencoder. The ability to convert a 32 × 32 infrared image to a 64 x 64 resolution image is demonstrated. This study presents an information visibility restoration technique that includes stacked Denoising Autoencoder (DAE) to improve anomalous areas in the condenser's infrared thermal images keeping in mind the current popularity of deep learning models in machine learning. The use of a deep learning autoencoder improves structural similarity index of the image, which is comprehensive. The structural similarity index of the image is improved when a deep learning autoencoder is used. In comparison to CLAHE and the Canny edge detection approach, substantial research indicates that the High-resolution autoencoder is best suited for IR image improvement. Thermal imaging, the suggested technique can improve anomalies without sacrificing crucial information when compared to the straight discriminant analysis.</description><identifier>ISSN: 0765-0019</identifier><identifier>EISSN: 1958-5608</identifier><identifier>DOI: 10.18280/ts.390134</identifier><language>eng</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Algorithms ; Anomalies ; Cameras ; Cold ; Deep learning ; Discriminant analysis ; Edge detection ; Efficiency ; Heat ; Helium ; High resolution ; Image enhancement ; Image resolution ; Infrared imagery ; Infrared imaging ; Machine learning ; Noise reduction ; Power plants ; Radiation ; Similarity ; Teaching methods ; Thermal imaging</subject><ispartof>Traitement du signal, 2022-02, Vol.39 (1), p.323-329</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Sathyan, Neethu M</creatorcontrib><creatorcontrib>Karthikeyan, Sashi Rekha</creatorcontrib><title>Infrared Thermal Image Enhancement in Cold Spot Detection of Condenser Air Ingress</title><title>Traitement du signal</title><description>The cold spot identification approach is limited due to the lack of high-resolution infrared thermal images. To solve the problem, infrared thermal images are enhanced using several ways. To improve the thermal images for cold spot detection, researchers used CLAHE, the Canny edge detection method, and deep learning approaches based on denoising autoencoder. The comparison of several enhancement methods based on quality metric factors leads to the selection of the best method. The noise in the Infrared (IR) image is reduced by using a high-resolution autoencoder. The ability to convert a 32 × 32 infrared image to a 64 x 64 resolution image is demonstrated. This study presents an information visibility restoration technique that includes stacked Denoising Autoencoder (DAE) to improve anomalous areas in the condenser's infrared thermal images keeping in mind the current popularity of deep learning models in machine learning. The use of a deep learning autoencoder improves structural similarity index of the image, which is comprehensive. The structural similarity index of the image is improved when a deep learning autoencoder is used. In comparison to CLAHE and the Canny edge detection approach, substantial research indicates that the High-resolution autoencoder is best suited for IR image improvement. Thermal imaging, the suggested technique can improve anomalies without sacrificing crucial information when compared to the straight discriminant analysis.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Cameras</subject><subject>Cold</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>Edge detection</subject><subject>Efficiency</subject><subject>Heat</subject><subject>Helium</subject><subject>High resolution</subject><subject>Image enhancement</subject><subject>Image resolution</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Machine learning</subject><subject>Noise reduction</subject><subject>Power plants</subject><subject>Radiation</subject><subject>Similarity</subject><subject>Teaching methods</subject><subject>Thermal imaging</subject><issn>0765-0019</issn><issn>1958-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkEFLAzEUhIMoWLQXf0HAm7A12WyyybHUqgsFQXsPyeal3dJNapIe_Pcu1rkMDMM83ofQAyULKmtJnkteMEUoa67QjCouKy6IvEYz0gpeEULVLZrnfCCTGG2EYDP02QWfTAKHt3tIoznibjQ7wOuwN6GHEULBQ8CreHT46xQLfoECfRliwNFPcXAQMiS8HBLuwi5Bzvfoxptjhvm_36Ht63q7eq82H2_darmpeiqbUikjJDcOlDfWK6AgvFDcW2tN31rRMglSWmWldM62jaPABW-Iansz_cbYHXq8zJ5S_D5DLvoQzylMF_XEoiU1pXU9tZ4urT7FnBN4fUrDaNKPpkT_UdMl6ws19gv_Q18G</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Sathyan, Neethu M</creator><creator>Karthikeyan, Sashi Rekha</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20220201</creationdate><title>Infrared Thermal Image Enhancement in Cold Spot Detection of Condenser Air Ingress</title><author>Sathyan, Neethu M ; Karthikeyan, Sashi Rekha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-9a685ade9fabf9e1e6f695fbbbac7b6738e88b9b88ddb74d1e5654097ca19533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Cameras</topic><topic>Cold</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>Edge detection</topic><topic>Efficiency</topic><topic>Heat</topic><topic>Helium</topic><topic>High resolution</topic><topic>Image enhancement</topic><topic>Image resolution</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Machine learning</topic><topic>Noise reduction</topic><topic>Power plants</topic><topic>Radiation</topic><topic>Similarity</topic><topic>Teaching methods</topic><topic>Thermal imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sathyan, Neethu M</creatorcontrib><creatorcontrib>Karthikeyan, Sashi Rekha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Traitement du signal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sathyan, Neethu M</au><au>Karthikeyan, Sashi Rekha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared Thermal Image Enhancement in Cold Spot Detection of Condenser Air Ingress</atitle><jtitle>Traitement du signal</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>39</volume><issue>1</issue><spage>323</spage><epage>329</epage><pages>323-329</pages><issn>0765-0019</issn><eissn>1958-5608</eissn><abstract>The cold spot identification approach is limited due to the lack of high-resolution infrared thermal images. To solve the problem, infrared thermal images are enhanced using several ways. To improve the thermal images for cold spot detection, researchers used CLAHE, the Canny edge detection method, and deep learning approaches based on denoising autoencoder. The comparison of several enhancement methods based on quality metric factors leads to the selection of the best method. The noise in the Infrared (IR) image is reduced by using a high-resolution autoencoder. The ability to convert a 32 × 32 infrared image to a 64 x 64 resolution image is demonstrated. This study presents an information visibility restoration technique that includes stacked Denoising Autoencoder (DAE) to improve anomalous areas in the condenser's infrared thermal images keeping in mind the current popularity of deep learning models in machine learning. The use of a deep learning autoencoder improves structural similarity index of the image, which is comprehensive. The structural similarity index of the image is improved when a deep learning autoencoder is used. In comparison to CLAHE and the Canny edge detection approach, substantial research indicates that the High-resolution autoencoder is best suited for IR image improvement. Thermal imaging, the suggested technique can improve anomalies without sacrificing crucial information when compared to the straight discriminant analysis.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ts.390134</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0765-0019 |
ispartof | Traitement du signal, 2022-02, Vol.39 (1), p.323-329 |
issn | 0765-0019 1958-5608 |
language | eng |
recordid | cdi_proquest_journals_2807021122 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Anomalies Cameras Cold Deep learning Discriminant analysis Edge detection Efficiency Heat Helium High resolution Image enhancement Image resolution Infrared imagery Infrared imaging Machine learning Noise reduction Power plants Radiation Similarity Teaching methods Thermal imaging |
title | Infrared Thermal Image Enhancement in Cold Spot Detection of Condenser Air Ingress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20Thermal%20Image%20Enhancement%20in%20Cold%20Spot%20Detection%20of%20Condenser%20Air%20Ingress&rft.jtitle=Traitement%20du%20signal&rft.au=Sathyan,%20Neethu%20M&rft.date=2022-02-01&rft.volume=39&rft.issue=1&rft.spage=323&rft.epage=329&rft.pages=323-329&rft.issn=0765-0019&rft.eissn=1958-5608&rft_id=info:doi/10.18280/ts.390134&rft_dat=%3Cproquest_cross%3E2807021122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807021122&rft_id=info:pmid/&rfr_iscdi=true |