Infrared Thermal Image Enhancement in Cold Spot Detection of Condenser Air Ingress

The cold spot identification approach is limited due to the lack of high-resolution infrared thermal images. To solve the problem, infrared thermal images are enhanced using several ways. To improve the thermal images for cold spot detection, researchers used CLAHE, the Canny edge detection method,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Traitement du signal 2022-02, Vol.39 (1), p.323-329
Hauptverfasser: Sathyan, Neethu M, Karthikeyan, Sashi Rekha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue 1
container_start_page 323
container_title Traitement du signal
container_volume 39
creator Sathyan, Neethu M
Karthikeyan, Sashi Rekha
description The cold spot identification approach is limited due to the lack of high-resolution infrared thermal images. To solve the problem, infrared thermal images are enhanced using several ways. To improve the thermal images for cold spot detection, researchers used CLAHE, the Canny edge detection method, and deep learning approaches based on denoising autoencoder. The comparison of several enhancement methods based on quality metric factors leads to the selection of the best method. The noise in the Infrared (IR) image is reduced by using a high-resolution autoencoder. The ability to convert a 32 × 32 infrared image to a 64 x 64 resolution image is demonstrated. This study presents an information visibility restoration technique that includes stacked Denoising Autoencoder (DAE) to improve anomalous areas in the condenser's infrared thermal images keeping in mind the current popularity of deep learning models in machine learning. The use of a deep learning autoencoder improves structural similarity index of the image, which is comprehensive. The structural similarity index of the image is improved when a deep learning autoencoder is used. In comparison to CLAHE and the Canny edge detection approach, substantial research indicates that the High-resolution autoencoder is best suited for IR image improvement. Thermal imaging, the suggested technique can improve anomalies without sacrificing crucial information when compared to the straight discriminant analysis.
doi_str_mv 10.18280/ts.390134
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807021122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807021122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-9a685ade9fabf9e1e6f695fbbbac7b6738e88b9b88ddb74d1e5654097ca19533</originalsourceid><addsrcrecordid>eNotkEFLAzEUhIMoWLQXf0HAm7A12WyyybHUqgsFQXsPyeal3dJNapIe_Pcu1rkMDMM83ofQAyULKmtJnkteMEUoa67QjCouKy6IvEYz0gpeEULVLZrnfCCTGG2EYDP02QWfTAKHt3tIoznibjQ7wOuwN6GHEULBQ8CreHT46xQLfoECfRliwNFPcXAQMiS8HBLuwi5Bzvfoxptjhvm_36Ht63q7eq82H2_darmpeiqbUikjJDcOlDfWK6AgvFDcW2tN31rRMglSWmWldM62jaPABW-Iansz_cbYHXq8zJ5S_D5DLvoQzylMF_XEoiU1pXU9tZ4urT7FnBN4fUrDaNKPpkT_UdMl6ws19gv_Q18G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807021122</pqid></control><display><type>article</type><title>Infrared Thermal Image Enhancement in Cold Spot Detection of Condenser Air Ingress</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sathyan, Neethu M ; Karthikeyan, Sashi Rekha</creator><creatorcontrib>Sathyan, Neethu M ; Karthikeyan, Sashi Rekha</creatorcontrib><description>The cold spot identification approach is limited due to the lack of high-resolution infrared thermal images. To solve the problem, infrared thermal images are enhanced using several ways. To improve the thermal images for cold spot detection, researchers used CLAHE, the Canny edge detection method, and deep learning approaches based on denoising autoencoder. The comparison of several enhancement methods based on quality metric factors leads to the selection of the best method. The noise in the Infrared (IR) image is reduced by using a high-resolution autoencoder. The ability to convert a 32 × 32 infrared image to a 64 x 64 resolution image is demonstrated. This study presents an information visibility restoration technique that includes stacked Denoising Autoencoder (DAE) to improve anomalous areas in the condenser's infrared thermal images keeping in mind the current popularity of deep learning models in machine learning. The use of a deep learning autoencoder improves structural similarity index of the image, which is comprehensive. The structural similarity index of the image is improved when a deep learning autoencoder is used. In comparison to CLAHE and the Canny edge detection approach, substantial research indicates that the High-resolution autoencoder is best suited for IR image improvement. Thermal imaging, the suggested technique can improve anomalies without sacrificing crucial information when compared to the straight discriminant analysis.</description><identifier>ISSN: 0765-0019</identifier><identifier>EISSN: 1958-5608</identifier><identifier>DOI: 10.18280/ts.390134</identifier><language>eng</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Algorithms ; Anomalies ; Cameras ; Cold ; Deep learning ; Discriminant analysis ; Edge detection ; Efficiency ; Heat ; Helium ; High resolution ; Image enhancement ; Image resolution ; Infrared imagery ; Infrared imaging ; Machine learning ; Noise reduction ; Power plants ; Radiation ; Similarity ; Teaching methods ; Thermal imaging</subject><ispartof>Traitement du signal, 2022-02, Vol.39 (1), p.323-329</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Sathyan, Neethu M</creatorcontrib><creatorcontrib>Karthikeyan, Sashi Rekha</creatorcontrib><title>Infrared Thermal Image Enhancement in Cold Spot Detection of Condenser Air Ingress</title><title>Traitement du signal</title><description>The cold spot identification approach is limited due to the lack of high-resolution infrared thermal images. To solve the problem, infrared thermal images are enhanced using several ways. To improve the thermal images for cold spot detection, researchers used CLAHE, the Canny edge detection method, and deep learning approaches based on denoising autoencoder. The comparison of several enhancement methods based on quality metric factors leads to the selection of the best method. The noise in the Infrared (IR) image is reduced by using a high-resolution autoencoder. The ability to convert a 32 × 32 infrared image to a 64 x 64 resolution image is demonstrated. This study presents an information visibility restoration technique that includes stacked Denoising Autoencoder (DAE) to improve anomalous areas in the condenser's infrared thermal images keeping in mind the current popularity of deep learning models in machine learning. The use of a deep learning autoencoder improves structural similarity index of the image, which is comprehensive. The structural similarity index of the image is improved when a deep learning autoencoder is used. In comparison to CLAHE and the Canny edge detection approach, substantial research indicates that the High-resolution autoencoder is best suited for IR image improvement. Thermal imaging, the suggested technique can improve anomalies without sacrificing crucial information when compared to the straight discriminant analysis.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Cameras</subject><subject>Cold</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>Edge detection</subject><subject>Efficiency</subject><subject>Heat</subject><subject>Helium</subject><subject>High resolution</subject><subject>Image enhancement</subject><subject>Image resolution</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Machine learning</subject><subject>Noise reduction</subject><subject>Power plants</subject><subject>Radiation</subject><subject>Similarity</subject><subject>Teaching methods</subject><subject>Thermal imaging</subject><issn>0765-0019</issn><issn>1958-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkEFLAzEUhIMoWLQXf0HAm7A12WyyybHUqgsFQXsPyeal3dJNapIe_Pcu1rkMDMM83ofQAyULKmtJnkteMEUoa67QjCouKy6IvEYz0gpeEULVLZrnfCCTGG2EYDP02QWfTAKHt3tIoznibjQ7wOuwN6GHEULBQ8CreHT46xQLfoECfRliwNFPcXAQMiS8HBLuwi5Bzvfoxptjhvm_36Ht63q7eq82H2_darmpeiqbUikjJDcOlDfWK6AgvFDcW2tN31rRMglSWmWldM62jaPABW-Iansz_cbYHXq8zJ5S_D5DLvoQzylMF_XEoiU1pXU9tZ4urT7FnBN4fUrDaNKPpkT_UdMl6ws19gv_Q18G</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Sathyan, Neethu M</creator><creator>Karthikeyan, Sashi Rekha</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20220201</creationdate><title>Infrared Thermal Image Enhancement in Cold Spot Detection of Condenser Air Ingress</title><author>Sathyan, Neethu M ; Karthikeyan, Sashi Rekha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-9a685ade9fabf9e1e6f695fbbbac7b6738e88b9b88ddb74d1e5654097ca19533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Cameras</topic><topic>Cold</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>Edge detection</topic><topic>Efficiency</topic><topic>Heat</topic><topic>Helium</topic><topic>High resolution</topic><topic>Image enhancement</topic><topic>Image resolution</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Machine learning</topic><topic>Noise reduction</topic><topic>Power plants</topic><topic>Radiation</topic><topic>Similarity</topic><topic>Teaching methods</topic><topic>Thermal imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sathyan, Neethu M</creatorcontrib><creatorcontrib>Karthikeyan, Sashi Rekha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Traitement du signal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sathyan, Neethu M</au><au>Karthikeyan, Sashi Rekha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared Thermal Image Enhancement in Cold Spot Detection of Condenser Air Ingress</atitle><jtitle>Traitement du signal</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>39</volume><issue>1</issue><spage>323</spage><epage>329</epage><pages>323-329</pages><issn>0765-0019</issn><eissn>1958-5608</eissn><abstract>The cold spot identification approach is limited due to the lack of high-resolution infrared thermal images. To solve the problem, infrared thermal images are enhanced using several ways. To improve the thermal images for cold spot detection, researchers used CLAHE, the Canny edge detection method, and deep learning approaches based on denoising autoencoder. The comparison of several enhancement methods based on quality metric factors leads to the selection of the best method. The noise in the Infrared (IR) image is reduced by using a high-resolution autoencoder. The ability to convert a 32 × 32 infrared image to a 64 x 64 resolution image is demonstrated. This study presents an information visibility restoration technique that includes stacked Denoising Autoencoder (DAE) to improve anomalous areas in the condenser's infrared thermal images keeping in mind the current popularity of deep learning models in machine learning. The use of a deep learning autoencoder improves structural similarity index of the image, which is comprehensive. The structural similarity index of the image is improved when a deep learning autoencoder is used. In comparison to CLAHE and the Canny edge detection approach, substantial research indicates that the High-resolution autoencoder is best suited for IR image improvement. Thermal imaging, the suggested technique can improve anomalies without sacrificing crucial information when compared to the straight discriminant analysis.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ts.390134</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0765-0019
ispartof Traitement du signal, 2022-02, Vol.39 (1), p.323-329
issn 0765-0019
1958-5608
language eng
recordid cdi_proquest_journals_2807021122
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Anomalies
Cameras
Cold
Deep learning
Discriminant analysis
Edge detection
Efficiency
Heat
Helium
High resolution
Image enhancement
Image resolution
Infrared imagery
Infrared imaging
Machine learning
Noise reduction
Power plants
Radiation
Similarity
Teaching methods
Thermal imaging
title Infrared Thermal Image Enhancement in Cold Spot Detection of Condenser Air Ingress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20Thermal%20Image%20Enhancement%20in%20Cold%20Spot%20Detection%20of%20Condenser%20Air%20Ingress&rft.jtitle=Traitement%20du%20signal&rft.au=Sathyan,%20Neethu%20M&rft.date=2022-02-01&rft.volume=39&rft.issue=1&rft.spage=323&rft.epage=329&rft.pages=323-329&rft.issn=0765-0019&rft.eissn=1958-5608&rft_id=info:doi/10.18280/ts.390134&rft_dat=%3Cproquest_cross%3E2807021122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807021122&rft_id=info:pmid/&rfr_iscdi=true