Orchard Boumans Algorithm and MRF Approach Based on Full Threshold Segmentation for Dental X-Ray Images

Dental X-ray segmentation uses different image processing (IP) methods helpful in diagnosing medical applications, clinical purposes & in real-time. These methods aim to define the segmentation of various tooth structures in dental X-rays which are utilized to identify caries, tooth fractures, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Traitement du signal 2022-04, Vol.39 (2), p.737-744
Hauptverfasser: Rajpoot, Vikram, Dubey, Rahul, Khan, Safdar Sardar, Maheshwari, Saumil, Dixit, Abhishek, Deo, Arpit, Doohan, Nitika Vats
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 744
container_issue 2
container_start_page 737
container_title Traitement du signal
container_volume 39
creator Rajpoot, Vikram
Dubey, Rahul
Khan, Safdar Sardar
Maheshwari, Saumil
Dixit, Abhishek
Deo, Arpit
Doohan, Nitika Vats
description Dental X-ray segmentation uses different image processing (IP) methods helpful in diagnosing medical applications, clinical purposes & in real-time. These methods aim to define the segmentation of various tooth structures in dental X-rays which are utilized to identify caries, tooth fractures, treatment of root canals, periodontal diseases, etc. The manual segmentation of Dental X-ray images for medical diagnosis is very complex and time-consuming from broad clinical databases. Orchard & Bouman is a color quantization approach used to evaluate a successful cluster division using an eigenvector of a color covariance matrix. It is repeated until the number of target clusters is reached. It is optimal for large clusters with Gaussian distributions to integrate different types of information on probabilism and spatial constraint by iteratively upgrading the later probability of the proposed model. Results of segmentation are achieved when iteration converges. Testing the proposed model's effectiveness will involve texture, distance sensing, and nature images. Experimental results show that our model achieves a higher segmentation precision with approximately 78.98 PSNR than MRF models based on pixels or regions.
doi_str_mv 10.18280/ts.390239
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807021073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807021073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1699-1c1d921df1b154b2343401675cbd90600f1666d8665ec1cb38680e5e389da03</originalsourceid><addsrcrecordid>eNotkMFOwzAQRC0EElXphS-wxA0pZTdOHPvYFgqViiq1PXCLHNtJWiVxsdND_55AmctqNKPd1SPkEWGKIhbw0ocpkxAzeUNGKFMRpRzELRlBxtMIAOU9mYRwhEEME87ZiFQbr2vlDZ27c6u6QGdN5fyhr1uqOkM_t0s6O528U7qmcxWsoa6jy3PT0H3tbahdY-jOVq3tetUfhqx0nr7-uoZ-RVt1oatWVTY8kLtSNcFO_ueY7JZv-8VHtN68rxazdaSRSxmhRiNjNCUWmCZFzBKWAPIs1YWRwAFK5JwbwXlqNeqCCS7AppYJaRSwMXm6bh0-_j7b0OdHd_bdcDAf-GQQI2RsaD1fW9q7ELwt85M_tMpfcoT8j2Teh_xKkv0AfjBj-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807021073</pqid></control><display><type>article</type><title>Orchard Boumans Algorithm and MRF Approach Based on Full Threshold Segmentation for Dental X-Ray Images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rajpoot, Vikram ; Dubey, Rahul ; Khan, Safdar Sardar ; Maheshwari, Saumil ; Dixit, Abhishek ; Deo, Arpit ; Doohan, Nitika Vats</creator><creatorcontrib>Rajpoot, Vikram ; Dubey, Rahul ; Khan, Safdar Sardar ; Maheshwari, Saumil ; Dixit, Abhishek ; Deo, Arpit ; Doohan, Nitika Vats</creatorcontrib><description>Dental X-ray segmentation uses different image processing (IP) methods helpful in diagnosing medical applications, clinical purposes &amp; in real-time. These methods aim to define the segmentation of various tooth structures in dental X-rays which are utilized to identify caries, tooth fractures, treatment of root canals, periodontal diseases, etc. The manual segmentation of Dental X-ray images for medical diagnosis is very complex and time-consuming from broad clinical databases. Orchard &amp; Bouman is a color quantization approach used to evaluate a successful cluster division using an eigenvector of a color covariance matrix. It is repeated until the number of target clusters is reached. It is optimal for large clusters with Gaussian distributions to integrate different types of information on probabilism and spatial constraint by iteratively upgrading the later probability of the proposed model. Results of segmentation are achieved when iteration converges. Testing the proposed model's effectiveness will involve texture, distance sensing, and nature images. Experimental results show that our model achieves a higher segmentation precision with approximately 78.98 PSNR than MRF models based on pixels or regions.</description><identifier>ISSN: 0765-0019</identifier><identifier>EISSN: 1958-5608</identifier><identifier>DOI: 10.18280/ts.390239</identifier><language>eng</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Algorithms ; Clusters ; Color ; Covariance matrix ; Cysts ; Dental caries ; Dentistry ; Dentists ; Eigenvectors ; Fractures ; Image processing ; Image segmentation ; Information sources ; Iterative methods ; Jaw ; Medical imaging ; Mouth ; Orthodontics ; Radiation ; Radiography ; Teeth ; Weightlifting ; X-rays</subject><ispartof>Traitement du signal, 2022-04, Vol.39 (2), p.737-744</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rajpoot, Vikram</creatorcontrib><creatorcontrib>Dubey, Rahul</creatorcontrib><creatorcontrib>Khan, Safdar Sardar</creatorcontrib><creatorcontrib>Maheshwari, Saumil</creatorcontrib><creatorcontrib>Dixit, Abhishek</creatorcontrib><creatorcontrib>Deo, Arpit</creatorcontrib><creatorcontrib>Doohan, Nitika Vats</creatorcontrib><title>Orchard Boumans Algorithm and MRF Approach Based on Full Threshold Segmentation for Dental X-Ray Images</title><title>Traitement du signal</title><description>Dental X-ray segmentation uses different image processing (IP) methods helpful in diagnosing medical applications, clinical purposes &amp; in real-time. These methods aim to define the segmentation of various tooth structures in dental X-rays which are utilized to identify caries, tooth fractures, treatment of root canals, periodontal diseases, etc. The manual segmentation of Dental X-ray images for medical diagnosis is very complex and time-consuming from broad clinical databases. Orchard &amp; Bouman is a color quantization approach used to evaluate a successful cluster division using an eigenvector of a color covariance matrix. It is repeated until the number of target clusters is reached. It is optimal for large clusters with Gaussian distributions to integrate different types of information on probabilism and spatial constraint by iteratively upgrading the later probability of the proposed model. Results of segmentation are achieved when iteration converges. Testing the proposed model's effectiveness will involve texture, distance sensing, and nature images. Experimental results show that our model achieves a higher segmentation precision with approximately 78.98 PSNR than MRF models based on pixels or regions.</description><subject>Algorithms</subject><subject>Clusters</subject><subject>Color</subject><subject>Covariance matrix</subject><subject>Cysts</subject><subject>Dental caries</subject><subject>Dentistry</subject><subject>Dentists</subject><subject>Eigenvectors</subject><subject>Fractures</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Information sources</subject><subject>Iterative methods</subject><subject>Jaw</subject><subject>Medical imaging</subject><subject>Mouth</subject><subject>Orthodontics</subject><subject>Radiation</subject><subject>Radiography</subject><subject>Teeth</subject><subject>Weightlifting</subject><subject>X-rays</subject><issn>0765-0019</issn><issn>1958-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkMFOwzAQRC0EElXphS-wxA0pZTdOHPvYFgqViiq1PXCLHNtJWiVxsdND_55AmctqNKPd1SPkEWGKIhbw0ocpkxAzeUNGKFMRpRzELRlBxtMIAOU9mYRwhEEME87ZiFQbr2vlDZ27c6u6QGdN5fyhr1uqOkM_t0s6O528U7qmcxWsoa6jy3PT0H3tbahdY-jOVq3tetUfhqx0nr7-uoZ-RVt1oatWVTY8kLtSNcFO_ueY7JZv-8VHtN68rxazdaSRSxmhRiNjNCUWmCZFzBKWAPIs1YWRwAFK5JwbwXlqNeqCCS7AppYJaRSwMXm6bh0-_j7b0OdHd_bdcDAf-GQQI2RsaD1fW9q7ELwt85M_tMpfcoT8j2Teh_xKkv0AfjBj-w</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Rajpoot, Vikram</creator><creator>Dubey, Rahul</creator><creator>Khan, Safdar Sardar</creator><creator>Maheshwari, Saumil</creator><creator>Dixit, Abhishek</creator><creator>Deo, Arpit</creator><creator>Doohan, Nitika Vats</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20220401</creationdate><title>Orchard Boumans Algorithm and MRF Approach Based on Full Threshold Segmentation for Dental X-Ray Images</title><author>Rajpoot, Vikram ; Dubey, Rahul ; Khan, Safdar Sardar ; Maheshwari, Saumil ; Dixit, Abhishek ; Deo, Arpit ; Doohan, Nitika Vats</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1699-1c1d921df1b154b2343401675cbd90600f1666d8665ec1cb38680e5e389da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clusters</topic><topic>Color</topic><topic>Covariance matrix</topic><topic>Cysts</topic><topic>Dental caries</topic><topic>Dentistry</topic><topic>Dentists</topic><topic>Eigenvectors</topic><topic>Fractures</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Information sources</topic><topic>Iterative methods</topic><topic>Jaw</topic><topic>Medical imaging</topic><topic>Mouth</topic><topic>Orthodontics</topic><topic>Radiation</topic><topic>Radiography</topic><topic>Teeth</topic><topic>Weightlifting</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajpoot, Vikram</creatorcontrib><creatorcontrib>Dubey, Rahul</creatorcontrib><creatorcontrib>Khan, Safdar Sardar</creatorcontrib><creatorcontrib>Maheshwari, Saumil</creatorcontrib><creatorcontrib>Dixit, Abhishek</creatorcontrib><creatorcontrib>Deo, Arpit</creatorcontrib><creatorcontrib>Doohan, Nitika Vats</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Traitement du signal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajpoot, Vikram</au><au>Dubey, Rahul</au><au>Khan, Safdar Sardar</au><au>Maheshwari, Saumil</au><au>Dixit, Abhishek</au><au>Deo, Arpit</au><au>Doohan, Nitika Vats</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orchard Boumans Algorithm and MRF Approach Based on Full Threshold Segmentation for Dental X-Ray Images</atitle><jtitle>Traitement du signal</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>39</volume><issue>2</issue><spage>737</spage><epage>744</epage><pages>737-744</pages><issn>0765-0019</issn><eissn>1958-5608</eissn><abstract>Dental X-ray segmentation uses different image processing (IP) methods helpful in diagnosing medical applications, clinical purposes &amp; in real-time. These methods aim to define the segmentation of various tooth structures in dental X-rays which are utilized to identify caries, tooth fractures, treatment of root canals, periodontal diseases, etc. The manual segmentation of Dental X-ray images for medical diagnosis is very complex and time-consuming from broad clinical databases. Orchard &amp; Bouman is a color quantization approach used to evaluate a successful cluster division using an eigenvector of a color covariance matrix. It is repeated until the number of target clusters is reached. It is optimal for large clusters with Gaussian distributions to integrate different types of information on probabilism and spatial constraint by iteratively upgrading the later probability of the proposed model. Results of segmentation are achieved when iteration converges. Testing the proposed model's effectiveness will involve texture, distance sensing, and nature images. Experimental results show that our model achieves a higher segmentation precision with approximately 78.98 PSNR than MRF models based on pixels or regions.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ts.390239</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0765-0019
ispartof Traitement du signal, 2022-04, Vol.39 (2), p.737-744
issn 0765-0019
1958-5608
language eng
recordid cdi_proquest_journals_2807021073
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Clusters
Color
Covariance matrix
Cysts
Dental caries
Dentistry
Dentists
Eigenvectors
Fractures
Image processing
Image segmentation
Information sources
Iterative methods
Jaw
Medical imaging
Mouth
Orthodontics
Radiation
Radiography
Teeth
Weightlifting
X-rays
title Orchard Boumans Algorithm and MRF Approach Based on Full Threshold Segmentation for Dental X-Ray Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orchard%20Boumans%20Algorithm%20and%20MRF%20Approach%20Based%20on%20Full%20Threshold%20Segmentation%20for%20Dental%20X-Ray%20Images&rft.jtitle=Traitement%20du%20signal&rft.au=Rajpoot,%20Vikram&rft.date=2022-04-01&rft.volume=39&rft.issue=2&rft.spage=737&rft.epage=744&rft.pages=737-744&rft.issn=0765-0019&rft.eissn=1958-5608&rft_id=info:doi/10.18280/ts.390239&rft_dat=%3Cproquest_cross%3E2807021073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807021073&rft_id=info:pmid/&rfr_iscdi=true