Orchard Boumans Algorithm and MRF Approach Based on Full Threshold Segmentation for Dental X-Ray Images
Dental X-ray segmentation uses different image processing (IP) methods helpful in diagnosing medical applications, clinical purposes & in real-time. These methods aim to define the segmentation of various tooth structures in dental X-rays which are utilized to identify caries, tooth fractures, t...
Gespeichert in:
Veröffentlicht in: | Traitement du signal 2022-04, Vol.39 (2), p.737-744 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 744 |
---|---|
container_issue | 2 |
container_start_page | 737 |
container_title | Traitement du signal |
container_volume | 39 |
creator | Rajpoot, Vikram Dubey, Rahul Khan, Safdar Sardar Maheshwari, Saumil Dixit, Abhishek Deo, Arpit Doohan, Nitika Vats |
description | Dental X-ray segmentation uses different image processing (IP) methods helpful in diagnosing medical applications, clinical purposes & in real-time. These methods aim to define the segmentation of various tooth structures in dental X-rays which are utilized to identify caries, tooth fractures, treatment of root canals, periodontal diseases, etc. The manual segmentation of Dental X-ray images for medical diagnosis is very complex and time-consuming from broad clinical databases. Orchard & Bouman is a color quantization approach used to evaluate a successful cluster division using an eigenvector of a color covariance matrix. It is repeated until the number of target clusters is reached. It is optimal for large clusters with Gaussian distributions to integrate different types of information on probabilism and spatial constraint by iteratively upgrading the later probability of the proposed model. Results of segmentation are achieved when iteration converges. Testing the proposed model's effectiveness will involve texture, distance sensing, and nature images. Experimental results show that our model achieves a higher segmentation precision with approximately 78.98 PSNR than MRF models based on pixels or regions. |
doi_str_mv | 10.18280/ts.390239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807021073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807021073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1699-1c1d921df1b154b2343401675cbd90600f1666d8665ec1cb38680e5e389da03</originalsourceid><addsrcrecordid>eNotkMFOwzAQRC0EElXphS-wxA0pZTdOHPvYFgqViiq1PXCLHNtJWiVxsdND_55AmctqNKPd1SPkEWGKIhbw0ocpkxAzeUNGKFMRpRzELRlBxtMIAOU9mYRwhEEME87ZiFQbr2vlDZ27c6u6QGdN5fyhr1uqOkM_t0s6O528U7qmcxWsoa6jy3PT0H3tbahdY-jOVq3tetUfhqx0nr7-uoZ-RVt1oatWVTY8kLtSNcFO_ueY7JZv-8VHtN68rxazdaSRSxmhRiNjNCUWmCZFzBKWAPIs1YWRwAFK5JwbwXlqNeqCCS7AppYJaRSwMXm6bh0-_j7b0OdHd_bdcDAf-GQQI2RsaD1fW9q7ELwt85M_tMpfcoT8j2Teh_xKkv0AfjBj-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807021073</pqid></control><display><type>article</type><title>Orchard Boumans Algorithm and MRF Approach Based on Full Threshold Segmentation for Dental X-Ray Images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rajpoot, Vikram ; Dubey, Rahul ; Khan, Safdar Sardar ; Maheshwari, Saumil ; Dixit, Abhishek ; Deo, Arpit ; Doohan, Nitika Vats</creator><creatorcontrib>Rajpoot, Vikram ; Dubey, Rahul ; Khan, Safdar Sardar ; Maheshwari, Saumil ; Dixit, Abhishek ; Deo, Arpit ; Doohan, Nitika Vats</creatorcontrib><description>Dental X-ray segmentation uses different image processing (IP) methods helpful in diagnosing medical applications, clinical purposes & in real-time. These methods aim to define the segmentation of various tooth structures in dental X-rays which are utilized to identify caries, tooth fractures, treatment of root canals, periodontal diseases, etc. The manual segmentation of Dental X-ray images for medical diagnosis is very complex and time-consuming from broad clinical databases. Orchard & Bouman is a color quantization approach used to evaluate a successful cluster division using an eigenvector of a color covariance matrix. It is repeated until the number of target clusters is reached. It is optimal for large clusters with Gaussian distributions to integrate different types of information on probabilism and spatial constraint by iteratively upgrading the later probability of the proposed model. Results of segmentation are achieved when iteration converges. Testing the proposed model's effectiveness will involve texture, distance sensing, and nature images. Experimental results show that our model achieves a higher segmentation precision with approximately 78.98 PSNR than MRF models based on pixels or regions.</description><identifier>ISSN: 0765-0019</identifier><identifier>EISSN: 1958-5608</identifier><identifier>DOI: 10.18280/ts.390239</identifier><language>eng</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Algorithms ; Clusters ; Color ; Covariance matrix ; Cysts ; Dental caries ; Dentistry ; Dentists ; Eigenvectors ; Fractures ; Image processing ; Image segmentation ; Information sources ; Iterative methods ; Jaw ; Medical imaging ; Mouth ; Orthodontics ; Radiation ; Radiography ; Teeth ; Weightlifting ; X-rays</subject><ispartof>Traitement du signal, 2022-04, Vol.39 (2), p.737-744</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rajpoot, Vikram</creatorcontrib><creatorcontrib>Dubey, Rahul</creatorcontrib><creatorcontrib>Khan, Safdar Sardar</creatorcontrib><creatorcontrib>Maheshwari, Saumil</creatorcontrib><creatorcontrib>Dixit, Abhishek</creatorcontrib><creatorcontrib>Deo, Arpit</creatorcontrib><creatorcontrib>Doohan, Nitika Vats</creatorcontrib><title>Orchard Boumans Algorithm and MRF Approach Based on Full Threshold Segmentation for Dental X-Ray Images</title><title>Traitement du signal</title><description>Dental X-ray segmentation uses different image processing (IP) methods helpful in diagnosing medical applications, clinical purposes & in real-time. These methods aim to define the segmentation of various tooth structures in dental X-rays which are utilized to identify caries, tooth fractures, treatment of root canals, periodontal diseases, etc. The manual segmentation of Dental X-ray images for medical diagnosis is very complex and time-consuming from broad clinical databases. Orchard & Bouman is a color quantization approach used to evaluate a successful cluster division using an eigenvector of a color covariance matrix. It is repeated until the number of target clusters is reached. It is optimal for large clusters with Gaussian distributions to integrate different types of information on probabilism and spatial constraint by iteratively upgrading the later probability of the proposed model. Results of segmentation are achieved when iteration converges. Testing the proposed model's effectiveness will involve texture, distance sensing, and nature images. Experimental results show that our model achieves a higher segmentation precision with approximately 78.98 PSNR than MRF models based on pixels or regions.</description><subject>Algorithms</subject><subject>Clusters</subject><subject>Color</subject><subject>Covariance matrix</subject><subject>Cysts</subject><subject>Dental caries</subject><subject>Dentistry</subject><subject>Dentists</subject><subject>Eigenvectors</subject><subject>Fractures</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Information sources</subject><subject>Iterative methods</subject><subject>Jaw</subject><subject>Medical imaging</subject><subject>Mouth</subject><subject>Orthodontics</subject><subject>Radiation</subject><subject>Radiography</subject><subject>Teeth</subject><subject>Weightlifting</subject><subject>X-rays</subject><issn>0765-0019</issn><issn>1958-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkMFOwzAQRC0EElXphS-wxA0pZTdOHPvYFgqViiq1PXCLHNtJWiVxsdND_55AmctqNKPd1SPkEWGKIhbw0ocpkxAzeUNGKFMRpRzELRlBxtMIAOU9mYRwhEEME87ZiFQbr2vlDZ27c6u6QGdN5fyhr1uqOkM_t0s6O528U7qmcxWsoa6jy3PT0H3tbahdY-jOVq3tetUfhqx0nr7-uoZ-RVt1oatWVTY8kLtSNcFO_ueY7JZv-8VHtN68rxazdaSRSxmhRiNjNCUWmCZFzBKWAPIs1YWRwAFK5JwbwXlqNeqCCS7AppYJaRSwMXm6bh0-_j7b0OdHd_bdcDAf-GQQI2RsaD1fW9q7ELwt85M_tMpfcoT8j2Teh_xKkv0AfjBj-w</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Rajpoot, Vikram</creator><creator>Dubey, Rahul</creator><creator>Khan, Safdar Sardar</creator><creator>Maheshwari, Saumil</creator><creator>Dixit, Abhishek</creator><creator>Deo, Arpit</creator><creator>Doohan, Nitika Vats</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20220401</creationdate><title>Orchard Boumans Algorithm and MRF Approach Based on Full Threshold Segmentation for Dental X-Ray Images</title><author>Rajpoot, Vikram ; Dubey, Rahul ; Khan, Safdar Sardar ; Maheshwari, Saumil ; Dixit, Abhishek ; Deo, Arpit ; Doohan, Nitika Vats</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1699-1c1d921df1b154b2343401675cbd90600f1666d8665ec1cb38680e5e389da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clusters</topic><topic>Color</topic><topic>Covariance matrix</topic><topic>Cysts</topic><topic>Dental caries</topic><topic>Dentistry</topic><topic>Dentists</topic><topic>Eigenvectors</topic><topic>Fractures</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Information sources</topic><topic>Iterative methods</topic><topic>Jaw</topic><topic>Medical imaging</topic><topic>Mouth</topic><topic>Orthodontics</topic><topic>Radiation</topic><topic>Radiography</topic><topic>Teeth</topic><topic>Weightlifting</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajpoot, Vikram</creatorcontrib><creatorcontrib>Dubey, Rahul</creatorcontrib><creatorcontrib>Khan, Safdar Sardar</creatorcontrib><creatorcontrib>Maheshwari, Saumil</creatorcontrib><creatorcontrib>Dixit, Abhishek</creatorcontrib><creatorcontrib>Deo, Arpit</creatorcontrib><creatorcontrib>Doohan, Nitika Vats</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Traitement du signal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajpoot, Vikram</au><au>Dubey, Rahul</au><au>Khan, Safdar Sardar</au><au>Maheshwari, Saumil</au><au>Dixit, Abhishek</au><au>Deo, Arpit</au><au>Doohan, Nitika Vats</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orchard Boumans Algorithm and MRF Approach Based on Full Threshold Segmentation for Dental X-Ray Images</atitle><jtitle>Traitement du signal</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>39</volume><issue>2</issue><spage>737</spage><epage>744</epage><pages>737-744</pages><issn>0765-0019</issn><eissn>1958-5608</eissn><abstract>Dental X-ray segmentation uses different image processing (IP) methods helpful in diagnosing medical applications, clinical purposes & in real-time. These methods aim to define the segmentation of various tooth structures in dental X-rays which are utilized to identify caries, tooth fractures, treatment of root canals, periodontal diseases, etc. The manual segmentation of Dental X-ray images for medical diagnosis is very complex and time-consuming from broad clinical databases. Orchard & Bouman is a color quantization approach used to evaluate a successful cluster division using an eigenvector of a color covariance matrix. It is repeated until the number of target clusters is reached. It is optimal for large clusters with Gaussian distributions to integrate different types of information on probabilism and spatial constraint by iteratively upgrading the later probability of the proposed model. Results of segmentation are achieved when iteration converges. Testing the proposed model's effectiveness will involve texture, distance sensing, and nature images. Experimental results show that our model achieves a higher segmentation precision with approximately 78.98 PSNR than MRF models based on pixels or regions.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ts.390239</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0765-0019 |
ispartof | Traitement du signal, 2022-04, Vol.39 (2), p.737-744 |
issn | 0765-0019 1958-5608 |
language | eng |
recordid | cdi_proquest_journals_2807021073 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Clusters Color Covariance matrix Cysts Dental caries Dentistry Dentists Eigenvectors Fractures Image processing Image segmentation Information sources Iterative methods Jaw Medical imaging Mouth Orthodontics Radiation Radiography Teeth Weightlifting X-rays |
title | Orchard Boumans Algorithm and MRF Approach Based on Full Threshold Segmentation for Dental X-Ray Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orchard%20Boumans%20Algorithm%20and%20MRF%20Approach%20Based%20on%20Full%20Threshold%20Segmentation%20for%20Dental%20X-Ray%20Images&rft.jtitle=Traitement%20du%20signal&rft.au=Rajpoot,%20Vikram&rft.date=2022-04-01&rft.volume=39&rft.issue=2&rft.spage=737&rft.epage=744&rft.pages=737-744&rft.issn=0765-0019&rft.eissn=1958-5608&rft_id=info:doi/10.18280/ts.390239&rft_dat=%3Cproquest_cross%3E2807021073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807021073&rft_id=info:pmid/&rfr_iscdi=true |