Electromyography Signal Analysis for the Detection of TMJ Disorder Using Classification Models and Multivariate Analysis

Temporomandibular joint (TMJ) disorder is a wide term that encompasses a variety of disorders with varying etiologies. The purpose of this study was to analyses electromyographic signals with wavelet transform for the diagnostic methods which help in TMJ issues in patients who visited the Dental Cen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revue d'Intelligence Artificielle 2022-06, Vol.36 (3), p.503-508
Hauptverfasser: Kakkeri, Roopa B., Bormane, Dattatraya S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 508
container_issue 3
container_start_page 503
container_title Revue d'Intelligence Artificielle
container_volume 36
creator Kakkeri, Roopa B.
Bormane, Dattatraya S.
description Temporomandibular joint (TMJ) disorder is a wide term that encompasses a variety of disorders with varying etiologies. The purpose of this study was to analyses electromyographic signals with wavelet transform for the diagnostic methods which help in TMJ issues in patients who visited the Dental Centre. Due to the increasing importance of electromyography signals in diagnosing muscular disorders, such as temporomandibular joint disorder, it has been widely used. Through various techniques, such as discrete wavelet transform and power spectral density, it is possible to identify and minimize the noise in the signals, which can be very useful in the diagnosis of the disorder. This paper presents an algorithm that combines the features of discrete wavelet transform and multivariate analysis in order to detect temporomandibular joint disorder. Support vector machine model is giving the better performance in terms of training, testing time and accuracy with 93% compared to other models. Multivariate analysis shows the significant difference in the feature variable chosen.
doi_str_mv 10.18280/ria.360320
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807020376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807020376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1710-917ce7fad08a7ff9c455248b14859334803914216cfe0453588ee6823b1e8c253</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWGpX_oGAS5ma50yyLG190eLCFtyFNJO0kemkJlNx_r2hFTf3bg6HwwfALUZjLIhAD9HrMS0RJegCDLDkouAVE5dggKQkBZPy4xqMUvIbxMqS0JKhAfiZN9Z0Mez7sI36sOvhu9-2uoGTfPrkE3Qhwm5n4cx2mfShhcHB1fIVznwKsbYRrpNvt3Da6Ox23ugTtAy1bRLUbQ2Xx6bz3zrndfbfewOunG6SHf39IVg_zlfT52Lx9vQynSwKgyuMCokrYyunayR05Zw0jHPCxAYzwSWlTCAqMSO4NM4ixikXwtpSELrBVhjC6RDcnb2HGL6ONnXqMxxjjkgqb1YhgmhVZur-TJkYUorWqUP0ex17hZE6ratyvjqvS38BVABtTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807020376</pqid></control><display><type>article</type><title>Electromyography Signal Analysis for the Detection of TMJ Disorder Using Classification Models and Multivariate Analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kakkeri, Roopa B. ; Bormane, Dattatraya S.</creator><creatorcontrib>Kakkeri, Roopa B. ; Bormane, Dattatraya S.</creatorcontrib><description>Temporomandibular joint (TMJ) disorder is a wide term that encompasses a variety of disorders with varying etiologies. The purpose of this study was to analyses electromyographic signals with wavelet transform for the diagnostic methods which help in TMJ issues in patients who visited the Dental Centre. Due to the increasing importance of electromyography signals in diagnosing muscular disorders, such as temporomandibular joint disorder, it has been widely used. Through various techniques, such as discrete wavelet transform and power spectral density, it is possible to identify and minimize the noise in the signals, which can be very useful in the diagnosis of the disorder. This paper presents an algorithm that combines the features of discrete wavelet transform and multivariate analysis in order to detect temporomandibular joint disorder. Support vector machine model is giving the better performance in terms of training, testing time and accuracy with 93% compared to other models. Multivariate analysis shows the significant difference in the feature variable chosen.</description><identifier>ISSN: 0992-499X</identifier><identifier>EISSN: 1958-5748</identifier><identifier>DOI: 10.18280/ria.360320</identifier><language>eng</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Algorithms ; Decomposition ; Discrete Wavelet Transform ; Disorders ; Electrodes ; Electromyography ; Females ; Multivariate analysis ; Orthodontics ; Power spectral density ; Signal analysis ; Signal processing ; Support vector machines ; Temporomandibular joint disorders ; Wavelet transforms</subject><ispartof>Revue d'Intelligence Artificielle, 2022-06, Vol.36 (3), p.503-508</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><creatorcontrib>Kakkeri, Roopa B.</creatorcontrib><creatorcontrib>Bormane, Dattatraya S.</creatorcontrib><title>Electromyography Signal Analysis for the Detection of TMJ Disorder Using Classification Models and Multivariate Analysis</title><title>Revue d'Intelligence Artificielle</title><description>Temporomandibular joint (TMJ) disorder is a wide term that encompasses a variety of disorders with varying etiologies. The purpose of this study was to analyses electromyographic signals with wavelet transform for the diagnostic methods which help in TMJ issues in patients who visited the Dental Centre. Due to the increasing importance of electromyography signals in diagnosing muscular disorders, such as temporomandibular joint disorder, it has been widely used. Through various techniques, such as discrete wavelet transform and power spectral density, it is possible to identify and minimize the noise in the signals, which can be very useful in the diagnosis of the disorder. This paper presents an algorithm that combines the features of discrete wavelet transform and multivariate analysis in order to detect temporomandibular joint disorder. Support vector machine model is giving the better performance in terms of training, testing time and accuracy with 93% compared to other models. Multivariate analysis shows the significant difference in the feature variable chosen.</description><subject>Algorithms</subject><subject>Decomposition</subject><subject>Discrete Wavelet Transform</subject><subject>Disorders</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Females</subject><subject>Multivariate analysis</subject><subject>Orthodontics</subject><subject>Power spectral density</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Support vector machines</subject><subject>Temporomandibular joint disorders</subject><subject>Wavelet transforms</subject><issn>0992-499X</issn><issn>1958-5748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kEtLAzEURoMoWGpX_oGAS5ma50yyLG190eLCFtyFNJO0kemkJlNx_r2hFTf3bg6HwwfALUZjLIhAD9HrMS0RJegCDLDkouAVE5dggKQkBZPy4xqMUvIbxMqS0JKhAfiZN9Z0Mez7sI36sOvhu9-2uoGTfPrkE3Qhwm5n4cx2mfShhcHB1fIVznwKsbYRrpNvt3Da6Ox23ugTtAy1bRLUbQ2Xx6bz3zrndfbfewOunG6SHf39IVg_zlfT52Lx9vQynSwKgyuMCokrYyunayR05Zw0jHPCxAYzwSWlTCAqMSO4NM4ixikXwtpSELrBVhjC6RDcnb2HGL6ONnXqMxxjjkgqb1YhgmhVZur-TJkYUorWqUP0ex17hZE6ratyvjqvS38BVABtTQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Kakkeri, Roopa B.</creator><creator>Bormane, Dattatraya S.</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220601</creationdate><title>Electromyography Signal Analysis for the Detection of TMJ Disorder Using Classification Models and Multivariate Analysis</title><author>Kakkeri, Roopa B. ; Bormane, Dattatraya S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1710-917ce7fad08a7ff9c455248b14859334803914216cfe0453588ee6823b1e8c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Decomposition</topic><topic>Discrete Wavelet Transform</topic><topic>Disorders</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Females</topic><topic>Multivariate analysis</topic><topic>Orthodontics</topic><topic>Power spectral density</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Support vector machines</topic><topic>Temporomandibular joint disorders</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kakkeri, Roopa B.</creatorcontrib><creatorcontrib>Bormane, Dattatraya S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Revue d'Intelligence Artificielle</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kakkeri, Roopa B.</au><au>Bormane, Dattatraya S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromyography Signal Analysis for the Detection of TMJ Disorder Using Classification Models and Multivariate Analysis</atitle><jtitle>Revue d'Intelligence Artificielle</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>36</volume><issue>3</issue><spage>503</spage><epage>508</epage><pages>503-508</pages><issn>0992-499X</issn><eissn>1958-5748</eissn><abstract>Temporomandibular joint (TMJ) disorder is a wide term that encompasses a variety of disorders with varying etiologies. The purpose of this study was to analyses electromyographic signals with wavelet transform for the diagnostic methods which help in TMJ issues in patients who visited the Dental Centre. Due to the increasing importance of electromyography signals in diagnosing muscular disorders, such as temporomandibular joint disorder, it has been widely used. Through various techniques, such as discrete wavelet transform and power spectral density, it is possible to identify and minimize the noise in the signals, which can be very useful in the diagnosis of the disorder. This paper presents an algorithm that combines the features of discrete wavelet transform and multivariate analysis in order to detect temporomandibular joint disorder. Support vector machine model is giving the better performance in terms of training, testing time and accuracy with 93% compared to other models. Multivariate analysis shows the significant difference in the feature variable chosen.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ria.360320</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0992-499X
ispartof Revue d'Intelligence Artificielle, 2022-06, Vol.36 (3), p.503-508
issn 0992-499X
1958-5748
language eng
recordid cdi_proquest_journals_2807020376
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Decomposition
Discrete Wavelet Transform
Disorders
Electrodes
Electromyography
Females
Multivariate analysis
Orthodontics
Power spectral density
Signal analysis
Signal processing
Support vector machines
Temporomandibular joint disorders
Wavelet transforms
title Electromyography Signal Analysis for the Detection of TMJ Disorder Using Classification Models and Multivariate Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromyography%20Signal%20Analysis%20for%20the%20Detection%20of%20TMJ%20Disorder%20Using%20Classification%20Models%20and%20Multivariate%20Analysis&rft.jtitle=Revue%20d'Intelligence%20Artificielle&rft.au=Kakkeri,%20Roopa%20B.&rft.date=2022-06-01&rft.volume=36&rft.issue=3&rft.spage=503&rft.epage=508&rft.pages=503-508&rft.issn=0992-499X&rft.eissn=1958-5748&rft_id=info:doi/10.18280/ria.360320&rft_dat=%3Cproquest_cross%3E2807020376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807020376&rft_id=info:pmid/&rfr_iscdi=true