Electromyography Signal Analysis for the Detection of TMJ Disorder Using Classification Models and Multivariate Analysis
Temporomandibular joint (TMJ) disorder is a wide term that encompasses a variety of disorders with varying etiologies. The purpose of this study was to analyses electromyographic signals with wavelet transform for the diagnostic methods which help in TMJ issues in patients who visited the Dental Cen...
Gespeichert in:
Veröffentlicht in: | Revue d'Intelligence Artificielle 2022-06, Vol.36 (3), p.503-508 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 508 |
---|---|
container_issue | 3 |
container_start_page | 503 |
container_title | Revue d'Intelligence Artificielle |
container_volume | 36 |
creator | Kakkeri, Roopa B. Bormane, Dattatraya S. |
description | Temporomandibular joint (TMJ) disorder is a wide term that encompasses a variety of disorders with varying etiologies. The purpose of this study was to analyses electromyographic signals with wavelet transform for the diagnostic methods which help in TMJ issues in patients who visited the Dental Centre. Due to the increasing importance of electromyography signals in diagnosing muscular disorders, such as temporomandibular joint disorder, it has been widely used. Through various techniques, such as discrete wavelet transform and power spectral density, it is possible to identify and minimize the noise in the signals, which can be very useful in the diagnosis of the disorder. This paper presents an algorithm that combines the features of discrete wavelet transform and multivariate analysis in order to detect temporomandibular joint disorder. Support vector machine model is giving the better performance in terms of training, testing time and accuracy with 93% compared to other models. Multivariate analysis shows the significant difference in the feature variable chosen. |
doi_str_mv | 10.18280/ria.360320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807020376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807020376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1710-917ce7fad08a7ff9c455248b14859334803914216cfe0453588ee6823b1e8c253</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWGpX_oGAS5ma50yyLG190eLCFtyFNJO0kemkJlNx_r2hFTf3bg6HwwfALUZjLIhAD9HrMS0RJegCDLDkouAVE5dggKQkBZPy4xqMUvIbxMqS0JKhAfiZN9Z0Mez7sI36sOvhu9-2uoGTfPrkE3Qhwm5n4cx2mfShhcHB1fIVznwKsbYRrpNvt3Da6Ox23ugTtAy1bRLUbQ2Xx6bz3zrndfbfewOunG6SHf39IVg_zlfT52Lx9vQynSwKgyuMCokrYyunayR05Zw0jHPCxAYzwSWlTCAqMSO4NM4ixikXwtpSELrBVhjC6RDcnb2HGL6ONnXqMxxjjkgqb1YhgmhVZur-TJkYUorWqUP0ex17hZE6ratyvjqvS38BVABtTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807020376</pqid></control><display><type>article</type><title>Electromyography Signal Analysis for the Detection of TMJ Disorder Using Classification Models and Multivariate Analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kakkeri, Roopa B. ; Bormane, Dattatraya S.</creator><creatorcontrib>Kakkeri, Roopa B. ; Bormane, Dattatraya S.</creatorcontrib><description>Temporomandibular joint (TMJ) disorder is a wide term that encompasses a variety of disorders with varying etiologies. The purpose of this study was to analyses electromyographic signals with wavelet transform for the diagnostic methods which help in TMJ issues in patients who visited the Dental Centre. Due to the increasing importance of electromyography signals in diagnosing muscular disorders, such as temporomandibular joint disorder, it has been widely used. Through various techniques, such as discrete wavelet transform and power spectral density, it is possible to identify and minimize the noise in the signals, which can be very useful in the diagnosis of the disorder. This paper presents an algorithm that combines the features of discrete wavelet transform and multivariate analysis in order to detect temporomandibular joint disorder. Support vector machine model is giving the better performance in terms of training, testing time and accuracy with 93% compared to other models. Multivariate analysis shows the significant difference in the feature variable chosen.</description><identifier>ISSN: 0992-499X</identifier><identifier>EISSN: 1958-5748</identifier><identifier>DOI: 10.18280/ria.360320</identifier><language>eng</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Algorithms ; Decomposition ; Discrete Wavelet Transform ; Disorders ; Electrodes ; Electromyography ; Females ; Multivariate analysis ; Orthodontics ; Power spectral density ; Signal analysis ; Signal processing ; Support vector machines ; Temporomandibular joint disorders ; Wavelet transforms</subject><ispartof>Revue d'Intelligence Artificielle, 2022-06, Vol.36 (3), p.503-508</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><creatorcontrib>Kakkeri, Roopa B.</creatorcontrib><creatorcontrib>Bormane, Dattatraya S.</creatorcontrib><title>Electromyography Signal Analysis for the Detection of TMJ Disorder Using Classification Models and Multivariate Analysis</title><title>Revue d'Intelligence Artificielle</title><description>Temporomandibular joint (TMJ) disorder is a wide term that encompasses a variety of disorders with varying etiologies. The purpose of this study was to analyses electromyographic signals with wavelet transform for the diagnostic methods which help in TMJ issues in patients who visited the Dental Centre. Due to the increasing importance of electromyography signals in diagnosing muscular disorders, such as temporomandibular joint disorder, it has been widely used. Through various techniques, such as discrete wavelet transform and power spectral density, it is possible to identify and minimize the noise in the signals, which can be very useful in the diagnosis of the disorder. This paper presents an algorithm that combines the features of discrete wavelet transform and multivariate analysis in order to detect temporomandibular joint disorder. Support vector machine model is giving the better performance in terms of training, testing time and accuracy with 93% compared to other models. Multivariate analysis shows the significant difference in the feature variable chosen.</description><subject>Algorithms</subject><subject>Decomposition</subject><subject>Discrete Wavelet Transform</subject><subject>Disorders</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Females</subject><subject>Multivariate analysis</subject><subject>Orthodontics</subject><subject>Power spectral density</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Support vector machines</subject><subject>Temporomandibular joint disorders</subject><subject>Wavelet transforms</subject><issn>0992-499X</issn><issn>1958-5748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kEtLAzEURoMoWGpX_oGAS5ma50yyLG190eLCFtyFNJO0kemkJlNx_r2hFTf3bg6HwwfALUZjLIhAD9HrMS0RJegCDLDkouAVE5dggKQkBZPy4xqMUvIbxMqS0JKhAfiZN9Z0Mez7sI36sOvhu9-2uoGTfPrkE3Qhwm5n4cx2mfShhcHB1fIVznwKsbYRrpNvt3Da6Ox23ugTtAy1bRLUbQ2Xx6bz3zrndfbfewOunG6SHf39IVg_zlfT52Lx9vQynSwKgyuMCokrYyunayR05Zw0jHPCxAYzwSWlTCAqMSO4NM4ixikXwtpSELrBVhjC6RDcnb2HGL6ONnXqMxxjjkgqb1YhgmhVZur-TJkYUorWqUP0ex17hZE6ratyvjqvS38BVABtTQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Kakkeri, Roopa B.</creator><creator>Bormane, Dattatraya S.</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220601</creationdate><title>Electromyography Signal Analysis for the Detection of TMJ Disorder Using Classification Models and Multivariate Analysis</title><author>Kakkeri, Roopa B. ; Bormane, Dattatraya S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1710-917ce7fad08a7ff9c455248b14859334803914216cfe0453588ee6823b1e8c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Decomposition</topic><topic>Discrete Wavelet Transform</topic><topic>Disorders</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Females</topic><topic>Multivariate analysis</topic><topic>Orthodontics</topic><topic>Power spectral density</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Support vector machines</topic><topic>Temporomandibular joint disorders</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kakkeri, Roopa B.</creatorcontrib><creatorcontrib>Bormane, Dattatraya S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Revue d'Intelligence Artificielle</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kakkeri, Roopa B.</au><au>Bormane, Dattatraya S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromyography Signal Analysis for the Detection of TMJ Disorder Using Classification Models and Multivariate Analysis</atitle><jtitle>Revue d'Intelligence Artificielle</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>36</volume><issue>3</issue><spage>503</spage><epage>508</epage><pages>503-508</pages><issn>0992-499X</issn><eissn>1958-5748</eissn><abstract>Temporomandibular joint (TMJ) disorder is a wide term that encompasses a variety of disorders with varying etiologies. The purpose of this study was to analyses electromyographic signals with wavelet transform for the diagnostic methods which help in TMJ issues in patients who visited the Dental Centre. Due to the increasing importance of electromyography signals in diagnosing muscular disorders, such as temporomandibular joint disorder, it has been widely used. Through various techniques, such as discrete wavelet transform and power spectral density, it is possible to identify and minimize the noise in the signals, which can be very useful in the diagnosis of the disorder. This paper presents an algorithm that combines the features of discrete wavelet transform and multivariate analysis in order to detect temporomandibular joint disorder. Support vector machine model is giving the better performance in terms of training, testing time and accuracy with 93% compared to other models. Multivariate analysis shows the significant difference in the feature variable chosen.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ria.360320</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0992-499X |
ispartof | Revue d'Intelligence Artificielle, 2022-06, Vol.36 (3), p.503-508 |
issn | 0992-499X 1958-5748 |
language | eng |
recordid | cdi_proquest_journals_2807020376 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Decomposition Discrete Wavelet Transform Disorders Electrodes Electromyography Females Multivariate analysis Orthodontics Power spectral density Signal analysis Signal processing Support vector machines Temporomandibular joint disorders Wavelet transforms |
title | Electromyography Signal Analysis for the Detection of TMJ Disorder Using Classification Models and Multivariate Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromyography%20Signal%20Analysis%20for%20the%20Detection%20of%20TMJ%20Disorder%20Using%20Classification%20Models%20and%20Multivariate%20Analysis&rft.jtitle=Revue%20d'Intelligence%20Artificielle&rft.au=Kakkeri,%20Roopa%20B.&rft.date=2022-06-01&rft.volume=36&rft.issue=3&rft.spage=503&rft.epage=508&rft.pages=503-508&rft.issn=0992-499X&rft.eissn=1958-5748&rft_id=info:doi/10.18280/ria.360320&rft_dat=%3Cproquest_cross%3E2807020376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807020376&rft_id=info:pmid/&rfr_iscdi=true |