Analysis of E-Commerce Process in the Downstream Section of Supply Chain Management Based on Process and Data Mining
Most businesses today use ecommerce stores and/or ecommerce platforms to carry out online marketing and sales activities. The rapid increase in the volume of E-commerce sales transactions normatively causes various problems that occur, especially in this case the buyer or consumer. Consumers express...
Gespeichert in:
Veröffentlicht in: | Ingénierie des systèmes d'Information 2022-02, Vol.27 (1), p.81-91 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | 1 |
container_start_page | 81 |
container_title | Ingénierie des systèmes d'Information |
container_volume | 27 |
creator | Ferra Arik Tridalestari Mustafid Warsito, Budi Wibowo, Adi Prasetyo, Hanung Nindito |
description | Most businesses today use ecommerce stores and/or ecommerce platforms to carry out online marketing and sales activities. The rapid increase in the volume of E-commerce sales transactions normatively causes various problems that occur, especially in this case the buyer or consumer. Consumers expressed dissatisfaction in their e-commerce delivery experience. Customers often complain to sellers in the marketplace about the delay in sending the ordered package. This paper proposes a research model that is proposed in analyzing the datasets generated from the Downstream Supply Chain Management process, especially the process of selling and shipping E-Commerce goods to end customers. The mechanism used is collaborating process mining and data mining so that the resulting analysis becomes more powerful and better information is obtained compared to only analyzing separately. The results of the analysis in the case study of the E-commerce Costumer to Customer (C2C) marketplace show that process mining related to shipping goods can be explained by adding the results of data mining analysis from the datasets obtained, especially the processes in the Downstream Supply Chain Management Section. |
doi_str_mv | 10.18280/isi.270110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807019113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807019113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2130-36a9510b2af43bcb0418094216d1656747fe2b446aeb35245b7b6ada423e0e613</originalsourceid><addsrcrecordid>eNo1kF1LwzAYhYMoOOau_AMBL6WaN0nT7XJu8wM2FKbX5W37dstY05p0yP690em5OTcPB87D2DWIOxjLsbi3wd7JTACIMzaQACbJQKbnbABGqQQUwCUbhbATMUqB0WLA-qnD_THYwNuaL5JZ2zTkS-Jvvi0pBG4d77fE5-2XC70nbPiayt627odfH7puf-SzLUZshQ431JDr-QMGqnhk_lfQVXyOPfKVddZtrthFjftAo78eso_HxfvsOVm-Pr3MpsuklKBEogxOUhCFxFqroiyEhrGYaAmmApOaTGc1yUJrg1SoVOq0yAqDFWqpSJABNWQ3p93Ot58HCn2-aw8-Hg559BVNTQBUpG5PVOnbEDzVeedtg_6Yg8h_zebRbH4yq74BQrdqDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807019113</pqid></control><display><type>article</type><title>Analysis of E-Commerce Process in the Downstream Section of Supply Chain Management Based on Process and Data Mining</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ferra Arik Tridalestari ; Mustafid ; Warsito, Budi ; Wibowo, Adi ; Prasetyo, Hanung Nindito</creator><creatorcontrib>Ferra Arik Tridalestari ; Mustafid ; Warsito, Budi ; Wibowo, Adi ; Prasetyo, Hanung Nindito</creatorcontrib><description>Most businesses today use ecommerce stores and/or ecommerce platforms to carry out online marketing and sales activities. The rapid increase in the volume of E-commerce sales transactions normatively causes various problems that occur, especially in this case the buyer or consumer. Consumers expressed dissatisfaction in their e-commerce delivery experience. Customers often complain to sellers in the marketplace about the delay in sending the ordered package. This paper proposes a research model that is proposed in analyzing the datasets generated from the Downstream Supply Chain Management process, especially the process of selling and shipping E-Commerce goods to end customers. The mechanism used is collaborating process mining and data mining so that the resulting analysis becomes more powerful and better information is obtained compared to only analyzing separately. The results of the analysis in the case study of the E-commerce Costumer to Customer (C2C) marketplace show that process mining related to shipping goods can be explained by adding the results of data mining analysis from the datasets obtained, especially the processes in the Downstream Supply Chain Management Section.</description><identifier>ISSN: 1633-1311</identifier><identifier>EISSN: 2116-7125</identifier><identifier>DOI: 10.18280/isi.270110</identifier><language>eng</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Alliances ; Clustering ; Consumers ; Cost analysis ; Customer services ; Customers ; Data mining ; Datasets ; Electronic commerce ; Information technology ; Logistics ; Pandemics ; Sales ; Shipping ; Six Sigma ; Supply chain management ; Supply chains</subject><ispartof>Ingénierie des systèmes d'Information, 2022-02, Vol.27 (1), p.81-91</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2130-36a9510b2af43bcb0418094216d1656747fe2b446aeb35245b7b6ada423e0e613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Ferra Arik Tridalestari</creatorcontrib><creatorcontrib>Mustafid</creatorcontrib><creatorcontrib>Warsito, Budi</creatorcontrib><creatorcontrib>Wibowo, Adi</creatorcontrib><creatorcontrib>Prasetyo, Hanung Nindito</creatorcontrib><title>Analysis of E-Commerce Process in the Downstream Section of Supply Chain Management Based on Process and Data Mining</title><title>Ingénierie des systèmes d'Information</title><description>Most businesses today use ecommerce stores and/or ecommerce platforms to carry out online marketing and sales activities. The rapid increase in the volume of E-commerce sales transactions normatively causes various problems that occur, especially in this case the buyer or consumer. Consumers expressed dissatisfaction in their e-commerce delivery experience. Customers often complain to sellers in the marketplace about the delay in sending the ordered package. This paper proposes a research model that is proposed in analyzing the datasets generated from the Downstream Supply Chain Management process, especially the process of selling and shipping E-Commerce goods to end customers. The mechanism used is collaborating process mining and data mining so that the resulting analysis becomes more powerful and better information is obtained compared to only analyzing separately. The results of the analysis in the case study of the E-commerce Costumer to Customer (C2C) marketplace show that process mining related to shipping goods can be explained by adding the results of data mining analysis from the datasets obtained, especially the processes in the Downstream Supply Chain Management Section.</description><subject>Alliances</subject><subject>Clustering</subject><subject>Consumers</subject><subject>Cost analysis</subject><subject>Customer services</subject><subject>Customers</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Electronic commerce</subject><subject>Information technology</subject><subject>Logistics</subject><subject>Pandemics</subject><subject>Sales</subject><subject>Shipping</subject><subject>Six Sigma</subject><subject>Supply chain management</subject><subject>Supply chains</subject><issn>1633-1311</issn><issn>2116-7125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo1kF1LwzAYhYMoOOau_AMBL6WaN0nT7XJu8wM2FKbX5W37dstY05p0yP690em5OTcPB87D2DWIOxjLsbi3wd7JTACIMzaQACbJQKbnbABGqQQUwCUbhbATMUqB0WLA-qnD_THYwNuaL5JZ2zTkS-Jvvi0pBG4d77fE5-2XC70nbPiayt627odfH7puf-SzLUZshQ431JDr-QMGqnhk_lfQVXyOPfKVddZtrthFjftAo78eso_HxfvsOVm-Pr3MpsuklKBEogxOUhCFxFqroiyEhrGYaAmmApOaTGc1yUJrg1SoVOq0yAqDFWqpSJABNWQ3p93Ot58HCn2-aw8-Hg559BVNTQBUpG5PVOnbEDzVeedtg_6Yg8h_zebRbH4yq74BQrdqDg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ferra Arik Tridalestari</creator><creator>Mustafid</creator><creator>Warsito, Budi</creator><creator>Wibowo, Adi</creator><creator>Prasetyo, Hanung Nindito</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20220201</creationdate><title>Analysis of E-Commerce Process in the Downstream Section of Supply Chain Management Based on Process and Data Mining</title><author>Ferra Arik Tridalestari ; Mustafid ; Warsito, Budi ; Wibowo, Adi ; Prasetyo, Hanung Nindito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2130-36a9510b2af43bcb0418094216d1656747fe2b446aeb35245b7b6ada423e0e613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alliances</topic><topic>Clustering</topic><topic>Consumers</topic><topic>Cost analysis</topic><topic>Customer services</topic><topic>Customers</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Electronic commerce</topic><topic>Information technology</topic><topic>Logistics</topic><topic>Pandemics</topic><topic>Sales</topic><topic>Shipping</topic><topic>Six Sigma</topic><topic>Supply chain management</topic><topic>Supply chains</topic><toplevel>online_resources</toplevel><creatorcontrib>Ferra Arik Tridalestari</creatorcontrib><creatorcontrib>Mustafid</creatorcontrib><creatorcontrib>Warsito, Budi</creatorcontrib><creatorcontrib>Wibowo, Adi</creatorcontrib><creatorcontrib>Prasetyo, Hanung Nindito</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Ingénierie des systèmes d'Information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferra Arik Tridalestari</au><au>Mustafid</au><au>Warsito, Budi</au><au>Wibowo, Adi</au><au>Prasetyo, Hanung Nindito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of E-Commerce Process in the Downstream Section of Supply Chain Management Based on Process and Data Mining</atitle><jtitle>Ingénierie des systèmes d'Information</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>27</volume><issue>1</issue><spage>81</spage><epage>91</epage><pages>81-91</pages><issn>1633-1311</issn><eissn>2116-7125</eissn><abstract>Most businesses today use ecommerce stores and/or ecommerce platforms to carry out online marketing and sales activities. The rapid increase in the volume of E-commerce sales transactions normatively causes various problems that occur, especially in this case the buyer or consumer. Consumers expressed dissatisfaction in their e-commerce delivery experience. Customers often complain to sellers in the marketplace about the delay in sending the ordered package. This paper proposes a research model that is proposed in analyzing the datasets generated from the Downstream Supply Chain Management process, especially the process of selling and shipping E-Commerce goods to end customers. The mechanism used is collaborating process mining and data mining so that the resulting analysis becomes more powerful and better information is obtained compared to only analyzing separately. The results of the analysis in the case study of the E-commerce Costumer to Customer (C2C) marketplace show that process mining related to shipping goods can be explained by adding the results of data mining analysis from the datasets obtained, especially the processes in the Downstream Supply Chain Management Section.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/isi.270110</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1633-1311 |
ispartof | Ingénierie des systèmes d'Information, 2022-02, Vol.27 (1), p.81-91 |
issn | 1633-1311 2116-7125 |
language | eng |
recordid | cdi_proquest_journals_2807019113 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Alliances Clustering Consumers Cost analysis Customer services Customers Data mining Datasets Electronic commerce Information technology Logistics Pandemics Sales Shipping Six Sigma Supply chain management Supply chains |
title | Analysis of E-Commerce Process in the Downstream Section of Supply Chain Management Based on Process and Data Mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20E-Commerce%20Process%20in%20the%20Downstream%20Section%20of%20Supply%20Chain%20Management%20Based%20on%20Process%20and%20Data%20Mining&rft.jtitle=Ing%C3%A9nierie%20des%20syst%C3%A8mes%20d'Information&rft.au=Ferra%20Arik%20Tridalestari&rft.date=2022-02-01&rft.volume=27&rft.issue=1&rft.spage=81&rft.epage=91&rft.pages=81-91&rft.issn=1633-1311&rft.eissn=2116-7125&rft_id=info:doi/10.18280/isi.270110&rft_dat=%3Cproquest_cross%3E2807019113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807019113&rft_id=info:pmid/&rfr_iscdi=true |