Severity Classification of Diabetic Retinopathy Using Ensemble Stacking Method

Diabetic retinopathy (DR), is a complication resulting from the disease that can lead to blindness if not detected early. Recently, many classification systems for diabetic retinopathy have been developed. However, several problems were found, namely, the classification results in certain classes st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revue d'Intelligence Artificielle 2022-12, Vol.36 (6), p.881-887
Hauptverfasser: Handoyo, Alif Tri, Kusuma, Gede Putra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 887
container_issue 6
container_start_page 881
container_title Revue d'Intelligence Artificielle
container_volume 36
creator Handoyo, Alif Tri
Kusuma, Gede Putra
description Diabetic retinopathy (DR), is a complication resulting from the disease that can lead to blindness if not detected early. Recently, many classification systems for diabetic retinopathy have been developed. However, several problems were found, namely, the classification results in certain classes still have less than optimal accuracy values, the lack of in-depth analysis for the results, and the overall accuracy that can still be improved. In this work, we experiment by evaluating and combining new deep learning models such as EfficientNet, EfficientNetV2, LCNet, MobileNetV3, TinyNet, and FBNetV3 using ensemble stacking techniques with four different meta-learners: decision trees, logistic regression, ANN, and SVM to provide better accuracy in classifying the severity of diabetic retinopathy. Our work offers satisfactory classification results on the APTOS 2019 dataset with training, validation, testing, and F1 score accuracy of 96.56%, 95.33%, 84.17%, and 70.16%, respectively.
doi_str_mv 10.18280/ria.360608
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2807000340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807000340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1718-f058f0524618d7c8773255b782eaa00e85aa2997a3f2102302820733e821dae43</originalsourceid><addsrcrecordid>eNotkFtLAzEQhYMoWGqf_AMBH2Xr5LKb5FFqvUBVsBZ8C7PbrI22uzVJhf57o_VhzsA5hxn4CDlnMGaaa7gKHseiggr0ERkwU-qiVFIfkwEYwwtpzNspGcXoa5BVxUUlYUCe5u7bBZ_2dLLGnLW-weT7jvYtvfFYu-Qb-pK167eYVnu6iL57p9Muuk29dnSesPn8dR5dWvXLM3LS4jq60f8eksXt9HVyX8ye7x4m17OiYYrpooVS5-GyYnqpGq2U4GVZK80dIoDTJSI3RqFoOQMugGsOSginOVuik2JILg53t6H_2rmY7Ee_C11-aTMJBQBCQm5dHlpN6GMMrrXb4DcY9paB_WNmMzN7YCZ-AKCcXXM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2807000340</pqid></control><display><type>article</type><title>Severity Classification of Diabetic Retinopathy Using Ensemble Stacking Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Handoyo, Alif Tri ; Kusuma, Gede Putra</creator><creatorcontrib>Handoyo, Alif Tri ; Kusuma, Gede Putra</creatorcontrib><description>Diabetic retinopathy (DR), is a complication resulting from the disease that can lead to blindness if not detected early. Recently, many classification systems for diabetic retinopathy have been developed. However, several problems were found, namely, the classification results in certain classes still have less than optimal accuracy values, the lack of in-depth analysis for the results, and the overall accuracy that can still be improved. In this work, we experiment by evaluating and combining new deep learning models such as EfficientNet, EfficientNetV2, LCNet, MobileNetV3, TinyNet, and FBNetV3 using ensemble stacking techniques with four different meta-learners: decision trees, logistic regression, ANN, and SVM to provide better accuracy in classifying the severity of diabetic retinopathy. Our work offers satisfactory classification results on the APTOS 2019 dataset with training, validation, testing, and F1 score accuracy of 96.56%, 95.33%, 84.17%, and 70.16%, respectively.</description><identifier>ISSN: 0992-499X</identifier><identifier>EISSN: 1958-5748</identifier><identifier>DOI: 10.18280/ria.360608</identifier><language>eng</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Accuracy ; Algorithms ; Classification ; Datasets ; Decision trees ; Deep learning ; Diabetes ; Diabetic retinopathy ; Experiments ; Machine learning ; Neural networks ; Regression analysis ; Stacking ; Support vector machines</subject><ispartof>Revue d'Intelligence Artificielle, 2022-12, Vol.36 (6), p.881-887</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Handoyo, Alif Tri</creatorcontrib><creatorcontrib>Kusuma, Gede Putra</creatorcontrib><title>Severity Classification of Diabetic Retinopathy Using Ensemble Stacking Method</title><title>Revue d'Intelligence Artificielle</title><description>Diabetic retinopathy (DR), is a complication resulting from the disease that can lead to blindness if not detected early. Recently, many classification systems for diabetic retinopathy have been developed. However, several problems were found, namely, the classification results in certain classes still have less than optimal accuracy values, the lack of in-depth analysis for the results, and the overall accuracy that can still be improved. In this work, we experiment by evaluating and combining new deep learning models such as EfficientNet, EfficientNetV2, LCNet, MobileNetV3, TinyNet, and FBNetV3 using ensemble stacking techniques with four different meta-learners: decision trees, logistic regression, ANN, and SVM to provide better accuracy in classifying the severity of diabetic retinopathy. Our work offers satisfactory classification results on the APTOS 2019 dataset with training, validation, testing, and F1 score accuracy of 96.56%, 95.33%, 84.17%, and 70.16%, respectively.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Diabetic retinopathy</subject><subject>Experiments</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Regression analysis</subject><subject>Stacking</subject><subject>Support vector machines</subject><issn>0992-499X</issn><issn>1958-5748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkFtLAzEQhYMoWGqf_AMBH2Xr5LKb5FFqvUBVsBZ8C7PbrI22uzVJhf57o_VhzsA5hxn4CDlnMGaaa7gKHseiggr0ERkwU-qiVFIfkwEYwwtpzNspGcXoa5BVxUUlYUCe5u7bBZ_2dLLGnLW-weT7jvYtvfFYu-Qb-pK167eYVnu6iL57p9Muuk29dnSesPn8dR5dWvXLM3LS4jq60f8eksXt9HVyX8ye7x4m17OiYYrpooVS5-GyYnqpGq2U4GVZK80dIoDTJSI3RqFoOQMugGsOSginOVuik2JILg53t6H_2rmY7Ee_C11-aTMJBQBCQm5dHlpN6GMMrrXb4DcY9paB_WNmMzN7YCZ-AKCcXXM</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Handoyo, Alif Tri</creator><creator>Kusuma, Gede Putra</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221201</creationdate><title>Severity Classification of Diabetic Retinopathy Using Ensemble Stacking Method</title><author>Handoyo, Alif Tri ; Kusuma, Gede Putra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1718-f058f0524618d7c8773255b782eaa00e85aa2997a3f2102302820733e821dae43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Diabetic retinopathy</topic><topic>Experiments</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Regression analysis</topic><topic>Stacking</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Handoyo, Alif Tri</creatorcontrib><creatorcontrib>Kusuma, Gede Putra</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Revue d'Intelligence Artificielle</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Handoyo, Alif Tri</au><au>Kusuma, Gede Putra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Severity Classification of Diabetic Retinopathy Using Ensemble Stacking Method</atitle><jtitle>Revue d'Intelligence Artificielle</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>36</volume><issue>6</issue><spage>881</spage><epage>887</epage><pages>881-887</pages><issn>0992-499X</issn><eissn>1958-5748</eissn><abstract>Diabetic retinopathy (DR), is a complication resulting from the disease that can lead to blindness if not detected early. Recently, many classification systems for diabetic retinopathy have been developed. However, several problems were found, namely, the classification results in certain classes still have less than optimal accuracy values, the lack of in-depth analysis for the results, and the overall accuracy that can still be improved. In this work, we experiment by evaluating and combining new deep learning models such as EfficientNet, EfficientNetV2, LCNet, MobileNetV3, TinyNet, and FBNetV3 using ensemble stacking techniques with four different meta-learners: decision trees, logistic regression, ANN, and SVM to provide better accuracy in classifying the severity of diabetic retinopathy. Our work offers satisfactory classification results on the APTOS 2019 dataset with training, validation, testing, and F1 score accuracy of 96.56%, 95.33%, 84.17%, and 70.16%, respectively.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/ria.360608</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0992-499X
ispartof Revue d'Intelligence Artificielle, 2022-12, Vol.36 (6), p.881-887
issn 0992-499X
1958-5748
language eng
recordid cdi_proquest_journals_2807000340
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Classification
Datasets
Decision trees
Deep learning
Diabetes
Diabetic retinopathy
Experiments
Machine learning
Neural networks
Regression analysis
Stacking
Support vector machines
title Severity Classification of Diabetic Retinopathy Using Ensemble Stacking Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Severity%20Classification%20of%20Diabetic%20Retinopathy%20Using%20Ensemble%20Stacking%20Method&rft.jtitle=Revue%20d'Intelligence%20Artificielle&rft.au=Handoyo,%20Alif%20Tri&rft.date=2022-12-01&rft.volume=36&rft.issue=6&rft.spage=881&rft.epage=887&rft.pages=881-887&rft.issn=0992-499X&rft.eissn=1958-5748&rft_id=info:doi/10.18280/ria.360608&rft_dat=%3Cproquest_cross%3E2807000340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2807000340&rft_id=info:pmid/&rfr_iscdi=true