Innovations in Winter Storm Forecasting and Decision Support Services
Winter storms are disruptive to society and the economy, and they often cause significant injuries and deaths. Innovations in winter storm forecasting have occurred across the value chain over the past two decades, from physical understanding, to observations, to model forecasts, to postprocessing,...
Gespeichert in:
Veröffentlicht in: | Bulletin of the American Meteorological Society 2023-03, Vol.104 (3), p.E715-E735 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E735 |
---|---|
container_issue | 3 |
container_start_page | E715 |
container_title | Bulletin of the American Meteorological Society |
container_volume | 104 |
creator | Novak, David R. Perfater, Sarah E. Demuth, Julie L. Bieda, Stephen W. Carbin, Gregory Craven, Jeffrey Erickson, Michael J. Jeglum, Matthew E. Kastman, Joshua Nelson, James A. Rudack, David E. Staudenmaier, Michael J. Waldstreicher, Jeff S. |
description | Winter storms are disruptive to society and the economy, and they often cause significant injuries and deaths. Innovations in winter storm forecasting have occurred across the value chain over the past two decades, from physical understanding, to observations, to model forecasts, to postprocessing, to forecaster knowledge and interpretation, to products and services, and ultimately to decision support. These innovations enable more accurate and consistent forecasts, which are increasingly being translated into actionable information for decision-makers. This paper reviews the current state of winter storm forecasting in the context of the U.S. National Weather Service operations and describes a potential future state. Given predictability limitations, a key challenge of winter storm forecasting has been characterizing uncertainty and communicating the forecast in ways that are understandable and useful to decision-makers. To address this challenge, particular focus is placed on establishing a probabilistic framework, with probabilistic hazard information serving as a foundation for winter storm decision support services. The framework is guided by social science research to ensure effective communication of risk to meet users’ needs. Solutions to gaps impeding progress in winter storm forecasting are highlighted, including better understanding of mesoscale phenomenon, the need for better ensemble calibration, a rigorous and consistent database of observed impacts, and linking multiparameter probabilities (e.g., probability of intense snowfall rates at rush hour) with users’ information needs and decisions. |
doi_str_mv | 10.1175/BAMS-D-22-0065.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2806975335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806975335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-8896c3b7564b65d3d2b14e9aff9905f957630cf2d512c6b4cc1766e5628403523</originalsourceid><addsrcrecordid>eNotkM9LwzAYhoMoOKd3jwHPnV-SJmmPcz90MPFQxWNo01QyXFKTdOB_b8s8fbx8D-8LD0L3BBaESP74tHytsnVGaQYg-IJcoBnhFDLIpbxEMwBg4wfkNbqJ8TBFVpAZ2uyc86c6We8itg5_WpdMwFXy4Yi3Phhdx2TdF65di9dG2ziSuBr63oeEKxNOVpt4i666-juau_87Rx_bzfvqJdu_Pe9Wy32mGWEpK4pSaNZILvJG8Ja1tCG5KeuuK0vgXcmlYKA72nJCtWhyrYkUwnBBixwYp2yOHs69ffA_g4lJHfwQ3DipaAGilJwxPlJwpnTwMQbTqT7YYx1-FQE1yVKTLLVWlKpJliLsD33gW8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806975335</pqid></control><display><type>article</type><title>Innovations in Winter Storm Forecasting and Decision Support Services</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Novak, David R. ; Perfater, Sarah E. ; Demuth, Julie L. ; Bieda, Stephen W. ; Carbin, Gregory ; Craven, Jeffrey ; Erickson, Michael J. ; Jeglum, Matthew E. ; Kastman, Joshua ; Nelson, James A. ; Rudack, David E. ; Staudenmaier, Michael J. ; Waldstreicher, Jeff S.</creator><creatorcontrib>Novak, David R. ; Perfater, Sarah E. ; Demuth, Julie L. ; Bieda, Stephen W. ; Carbin, Gregory ; Craven, Jeffrey ; Erickson, Michael J. ; Jeglum, Matthew E. ; Kastman, Joshua ; Nelson, James A. ; Rudack, David E. ; Staudenmaier, Michael J. ; Waldstreicher, Jeff S.</creatorcontrib><description>Winter storms are disruptive to society and the economy, and they often cause significant injuries and deaths. Innovations in winter storm forecasting have occurred across the value chain over the past two decades, from physical understanding, to observations, to model forecasts, to postprocessing, to forecaster knowledge and interpretation, to products and services, and ultimately to decision support. These innovations enable more accurate and consistent forecasts, which are increasingly being translated into actionable information for decision-makers. This paper reviews the current state of winter storm forecasting in the context of the U.S. National Weather Service operations and describes a potential future state. Given predictability limitations, a key challenge of winter storm forecasting has been characterizing uncertainty and communicating the forecast in ways that are understandable and useful to decision-makers. To address this challenge, particular focus is placed on establishing a probabilistic framework, with probabilistic hazard information serving as a foundation for winter storm decision support services. The framework is guided by social science research to ensure effective communication of risk to meet users’ needs. Solutions to gaps impeding progress in winter storm forecasting are highlighted, including better understanding of mesoscale phenomenon, the need for better ensemble calibration, a rigorous and consistent database of observed impacts, and linking multiparameter probabilities (e.g., probability of intense snowfall rates at rush hour) with users’ information needs and decisions.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/BAMS-D-22-0065.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Communication ; Decision making ; Decision support systems ; Fatalities ; Forecasting ; Innovation ; Innovations ; Mesoscale phenomena ; Meteorological services ; Precipitation ; Probability theory ; Public safety ; Rain ; Risk communication ; Scientific research ; Snow ; Snowfall ; Social sciences ; Statistical analysis ; Storm forecasting ; Storms ; Support services ; Value chains ; Weather ; Weather forecasting ; Winter ; Winter storms</subject><ispartof>Bulletin of the American Meteorological Society, 2023-03, Vol.104 (3), p.E715-E735</ispartof><rights>Copyright American Meteorological Society 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-8896c3b7564b65d3d2b14e9aff9905f957630cf2d512c6b4cc1766e5628403523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27903,27904</link.rule.ids></links><search><creatorcontrib>Novak, David R.</creatorcontrib><creatorcontrib>Perfater, Sarah E.</creatorcontrib><creatorcontrib>Demuth, Julie L.</creatorcontrib><creatorcontrib>Bieda, Stephen W.</creatorcontrib><creatorcontrib>Carbin, Gregory</creatorcontrib><creatorcontrib>Craven, Jeffrey</creatorcontrib><creatorcontrib>Erickson, Michael J.</creatorcontrib><creatorcontrib>Jeglum, Matthew E.</creatorcontrib><creatorcontrib>Kastman, Joshua</creatorcontrib><creatorcontrib>Nelson, James A.</creatorcontrib><creatorcontrib>Rudack, David E.</creatorcontrib><creatorcontrib>Staudenmaier, Michael J.</creatorcontrib><creatorcontrib>Waldstreicher, Jeff S.</creatorcontrib><title>Innovations in Winter Storm Forecasting and Decision Support Services</title><title>Bulletin of the American Meteorological Society</title><description>Winter storms are disruptive to society and the economy, and they often cause significant injuries and deaths. Innovations in winter storm forecasting have occurred across the value chain over the past two decades, from physical understanding, to observations, to model forecasts, to postprocessing, to forecaster knowledge and interpretation, to products and services, and ultimately to decision support. These innovations enable more accurate and consistent forecasts, which are increasingly being translated into actionable information for decision-makers. This paper reviews the current state of winter storm forecasting in the context of the U.S. National Weather Service operations and describes a potential future state. Given predictability limitations, a key challenge of winter storm forecasting has been characterizing uncertainty and communicating the forecast in ways that are understandable and useful to decision-makers. To address this challenge, particular focus is placed on establishing a probabilistic framework, with probabilistic hazard information serving as a foundation for winter storm decision support services. The framework is guided by social science research to ensure effective communication of risk to meet users’ needs. Solutions to gaps impeding progress in winter storm forecasting are highlighted, including better understanding of mesoscale phenomenon, the need for better ensemble calibration, a rigorous and consistent database of observed impacts, and linking multiparameter probabilities (e.g., probability of intense snowfall rates at rush hour) with users’ information needs and decisions.</description><subject>Communication</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Fatalities</subject><subject>Forecasting</subject><subject>Innovation</subject><subject>Innovations</subject><subject>Mesoscale phenomena</subject><subject>Meteorological services</subject><subject>Precipitation</subject><subject>Probability theory</subject><subject>Public safety</subject><subject>Rain</subject><subject>Risk communication</subject><subject>Scientific research</subject><subject>Snow</subject><subject>Snowfall</subject><subject>Social sciences</subject><subject>Statistical analysis</subject><subject>Storm forecasting</subject><subject>Storms</subject><subject>Support services</subject><subject>Value chains</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Winter</subject><subject>Winter storms</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkM9LwzAYhoMoOKd3jwHPnV-SJmmPcz90MPFQxWNo01QyXFKTdOB_b8s8fbx8D-8LD0L3BBaESP74tHytsnVGaQYg-IJcoBnhFDLIpbxEMwBg4wfkNbqJ8TBFVpAZ2uyc86c6We8itg5_WpdMwFXy4Yi3Phhdx2TdF65di9dG2ziSuBr63oeEKxNOVpt4i666-juau_87Rx_bzfvqJdu_Pe9Wy32mGWEpK4pSaNZILvJG8Ja1tCG5KeuuK0vgXcmlYKA72nJCtWhyrYkUwnBBixwYp2yOHs69ffA_g4lJHfwQ3DipaAGilJwxPlJwpnTwMQbTqT7YYx1-FQE1yVKTLLVWlKpJliLsD33gW8E</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Novak, David R.</creator><creator>Perfater, Sarah E.</creator><creator>Demuth, Julie L.</creator><creator>Bieda, Stephen W.</creator><creator>Carbin, Gregory</creator><creator>Craven, Jeffrey</creator><creator>Erickson, Michael J.</creator><creator>Jeglum, Matthew E.</creator><creator>Kastman, Joshua</creator><creator>Nelson, James A.</creator><creator>Rudack, David E.</creator><creator>Staudenmaier, Michael J.</creator><creator>Waldstreicher, Jeff S.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>202303</creationdate><title>Innovations in Winter Storm Forecasting and Decision Support Services</title><author>Novak, David R. ; Perfater, Sarah E. ; Demuth, Julie L. ; Bieda, Stephen W. ; Carbin, Gregory ; Craven, Jeffrey ; Erickson, Michael J. ; Jeglum, Matthew E. ; Kastman, Joshua ; Nelson, James A. ; Rudack, David E. ; Staudenmaier, Michael J. ; Waldstreicher, Jeff S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-8896c3b7564b65d3d2b14e9aff9905f957630cf2d512c6b4cc1766e5628403523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Communication</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Fatalities</topic><topic>Forecasting</topic><topic>Innovation</topic><topic>Innovations</topic><topic>Mesoscale phenomena</topic><topic>Meteorological services</topic><topic>Precipitation</topic><topic>Probability theory</topic><topic>Public safety</topic><topic>Rain</topic><topic>Risk communication</topic><topic>Scientific research</topic><topic>Snow</topic><topic>Snowfall</topic><topic>Social sciences</topic><topic>Statistical analysis</topic><topic>Storm forecasting</topic><topic>Storms</topic><topic>Support services</topic><topic>Value chains</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Winter</topic><topic>Winter storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Novak, David R.</creatorcontrib><creatorcontrib>Perfater, Sarah E.</creatorcontrib><creatorcontrib>Demuth, Julie L.</creatorcontrib><creatorcontrib>Bieda, Stephen W.</creatorcontrib><creatorcontrib>Carbin, Gregory</creatorcontrib><creatorcontrib>Craven, Jeffrey</creatorcontrib><creatorcontrib>Erickson, Michael J.</creatorcontrib><creatorcontrib>Jeglum, Matthew E.</creatorcontrib><creatorcontrib>Kastman, Joshua</creatorcontrib><creatorcontrib>Nelson, James A.</creatorcontrib><creatorcontrib>Rudack, David E.</creatorcontrib><creatorcontrib>Staudenmaier, Michael J.</creatorcontrib><creatorcontrib>Waldstreicher, Jeff S.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Novak, David R.</au><au>Perfater, Sarah E.</au><au>Demuth, Julie L.</au><au>Bieda, Stephen W.</au><au>Carbin, Gregory</au><au>Craven, Jeffrey</au><au>Erickson, Michael J.</au><au>Jeglum, Matthew E.</au><au>Kastman, Joshua</au><au>Nelson, James A.</au><au>Rudack, David E.</au><au>Staudenmaier, Michael J.</au><au>Waldstreicher, Jeff S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innovations in Winter Storm Forecasting and Decision Support Services</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2023-03</date><risdate>2023</risdate><volume>104</volume><issue>3</issue><spage>E715</spage><epage>E735</epage><pages>E715-E735</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>Winter storms are disruptive to society and the economy, and they often cause significant injuries and deaths. Innovations in winter storm forecasting have occurred across the value chain over the past two decades, from physical understanding, to observations, to model forecasts, to postprocessing, to forecaster knowledge and interpretation, to products and services, and ultimately to decision support. These innovations enable more accurate and consistent forecasts, which are increasingly being translated into actionable information for decision-makers. This paper reviews the current state of winter storm forecasting in the context of the U.S. National Weather Service operations and describes a potential future state. Given predictability limitations, a key challenge of winter storm forecasting has been characterizing uncertainty and communicating the forecast in ways that are understandable and useful to decision-makers. To address this challenge, particular focus is placed on establishing a probabilistic framework, with probabilistic hazard information serving as a foundation for winter storm decision support services. The framework is guided by social science research to ensure effective communication of risk to meet users’ needs. Solutions to gaps impeding progress in winter storm forecasting are highlighted, including better understanding of mesoscale phenomenon, the need for better ensemble calibration, a rigorous and consistent database of observed impacts, and linking multiparameter probabilities (e.g., probability of intense snowfall rates at rush hour) with users’ information needs and decisions.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/BAMS-D-22-0065.1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0007 |
ispartof | Bulletin of the American Meteorological Society, 2023-03, Vol.104 (3), p.E715-E735 |
issn | 0003-0007 1520-0477 |
language | eng |
recordid | cdi_proquest_journals_2806975335 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Communication Decision making Decision support systems Fatalities Forecasting Innovation Innovations Mesoscale phenomena Meteorological services Precipitation Probability theory Public safety Rain Risk communication Scientific research Snow Snowfall Social sciences Statistical analysis Storm forecasting Storms Support services Value chains Weather Weather forecasting Winter Winter storms |
title | Innovations in Winter Storm Forecasting and Decision Support Services |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innovations%20in%20Winter%20Storm%20Forecasting%20and%20Decision%20Support%20Services&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Novak,%20David%20R.&rft.date=2023-03&rft.volume=104&rft.issue=3&rft.spage=E715&rft.epage=E735&rft.pages=E715-E735&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/BAMS-D-22-0065.1&rft_dat=%3Cproquest_cross%3E2806975335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806975335&rft_id=info:pmid/&rfr_iscdi=true |