Innovations in Winter Storm Forecasting and Decision Support Services

Winter storms are disruptive to society and the economy, and they often cause significant injuries and deaths. Innovations in winter storm forecasting have occurred across the value chain over the past two decades, from physical understanding, to observations, to model forecasts, to postprocessing,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2023-03, Vol.104 (3), p.E715-E735
Hauptverfasser: Novak, David R., Perfater, Sarah E., Demuth, Julie L., Bieda, Stephen W., Carbin, Gregory, Craven, Jeffrey, Erickson, Michael J., Jeglum, Matthew E., Kastman, Joshua, Nelson, James A., Rudack, David E., Staudenmaier, Michael J., Waldstreicher, Jeff S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E735
container_issue 3
container_start_page E715
container_title Bulletin of the American Meteorological Society
container_volume 104
creator Novak, David R.
Perfater, Sarah E.
Demuth, Julie L.
Bieda, Stephen W.
Carbin, Gregory
Craven, Jeffrey
Erickson, Michael J.
Jeglum, Matthew E.
Kastman, Joshua
Nelson, James A.
Rudack, David E.
Staudenmaier, Michael J.
Waldstreicher, Jeff S.
description Winter storms are disruptive to society and the economy, and they often cause significant injuries and deaths. Innovations in winter storm forecasting have occurred across the value chain over the past two decades, from physical understanding, to observations, to model forecasts, to postprocessing, to forecaster knowledge and interpretation, to products and services, and ultimately to decision support. These innovations enable more accurate and consistent forecasts, which are increasingly being translated into actionable information for decision-makers. This paper reviews the current state of winter storm forecasting in the context of the U.S. National Weather Service operations and describes a potential future state. Given predictability limitations, a key challenge of winter storm forecasting has been characterizing uncertainty and communicating the forecast in ways that are understandable and useful to decision-makers. To address this challenge, particular focus is placed on establishing a probabilistic framework, with probabilistic hazard information serving as a foundation for winter storm decision support services. The framework is guided by social science research to ensure effective communication of risk to meet users’ needs. Solutions to gaps impeding progress in winter storm forecasting are highlighted, including better understanding of mesoscale phenomenon, the need for better ensemble calibration, a rigorous and consistent database of observed impacts, and linking multiparameter probabilities (e.g., probability of intense snowfall rates at rush hour) with users’ information needs and decisions.
doi_str_mv 10.1175/BAMS-D-22-0065.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2806975335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806975335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-8896c3b7564b65d3d2b14e9aff9905f957630cf2d512c6b4cc1766e5628403523</originalsourceid><addsrcrecordid>eNotkM9LwzAYhoMoOKd3jwHPnV-SJmmPcz90MPFQxWNo01QyXFKTdOB_b8s8fbx8D-8LD0L3BBaESP74tHytsnVGaQYg-IJcoBnhFDLIpbxEMwBg4wfkNbqJ8TBFVpAZ2uyc86c6We8itg5_WpdMwFXy4Yi3Phhdx2TdF65di9dG2ziSuBr63oeEKxNOVpt4i666-juau_87Rx_bzfvqJdu_Pe9Wy32mGWEpK4pSaNZILvJG8Ja1tCG5KeuuK0vgXcmlYKA72nJCtWhyrYkUwnBBixwYp2yOHs69ffA_g4lJHfwQ3DipaAGilJwxPlJwpnTwMQbTqT7YYx1-FQE1yVKTLLVWlKpJliLsD33gW8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806975335</pqid></control><display><type>article</type><title>Innovations in Winter Storm Forecasting and Decision Support Services</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Novak, David R. ; Perfater, Sarah E. ; Demuth, Julie L. ; Bieda, Stephen W. ; Carbin, Gregory ; Craven, Jeffrey ; Erickson, Michael J. ; Jeglum, Matthew E. ; Kastman, Joshua ; Nelson, James A. ; Rudack, David E. ; Staudenmaier, Michael J. ; Waldstreicher, Jeff S.</creator><creatorcontrib>Novak, David R. ; Perfater, Sarah E. ; Demuth, Julie L. ; Bieda, Stephen W. ; Carbin, Gregory ; Craven, Jeffrey ; Erickson, Michael J. ; Jeglum, Matthew E. ; Kastman, Joshua ; Nelson, James A. ; Rudack, David E. ; Staudenmaier, Michael J. ; Waldstreicher, Jeff S.</creatorcontrib><description>Winter storms are disruptive to society and the economy, and they often cause significant injuries and deaths. Innovations in winter storm forecasting have occurred across the value chain over the past two decades, from physical understanding, to observations, to model forecasts, to postprocessing, to forecaster knowledge and interpretation, to products and services, and ultimately to decision support. These innovations enable more accurate and consistent forecasts, which are increasingly being translated into actionable information for decision-makers. This paper reviews the current state of winter storm forecasting in the context of the U.S. National Weather Service operations and describes a potential future state. Given predictability limitations, a key challenge of winter storm forecasting has been characterizing uncertainty and communicating the forecast in ways that are understandable and useful to decision-makers. To address this challenge, particular focus is placed on establishing a probabilistic framework, with probabilistic hazard information serving as a foundation for winter storm decision support services. The framework is guided by social science research to ensure effective communication of risk to meet users’ needs. Solutions to gaps impeding progress in winter storm forecasting are highlighted, including better understanding of mesoscale phenomenon, the need for better ensemble calibration, a rigorous and consistent database of observed impacts, and linking multiparameter probabilities (e.g., probability of intense snowfall rates at rush hour) with users’ information needs and decisions.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/BAMS-D-22-0065.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Communication ; Decision making ; Decision support systems ; Fatalities ; Forecasting ; Innovation ; Innovations ; Mesoscale phenomena ; Meteorological services ; Precipitation ; Probability theory ; Public safety ; Rain ; Risk communication ; Scientific research ; Snow ; Snowfall ; Social sciences ; Statistical analysis ; Storm forecasting ; Storms ; Support services ; Value chains ; Weather ; Weather forecasting ; Winter ; Winter storms</subject><ispartof>Bulletin of the American Meteorological Society, 2023-03, Vol.104 (3), p.E715-E735</ispartof><rights>Copyright American Meteorological Society 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-8896c3b7564b65d3d2b14e9aff9905f957630cf2d512c6b4cc1766e5628403523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27903,27904</link.rule.ids></links><search><creatorcontrib>Novak, David R.</creatorcontrib><creatorcontrib>Perfater, Sarah E.</creatorcontrib><creatorcontrib>Demuth, Julie L.</creatorcontrib><creatorcontrib>Bieda, Stephen W.</creatorcontrib><creatorcontrib>Carbin, Gregory</creatorcontrib><creatorcontrib>Craven, Jeffrey</creatorcontrib><creatorcontrib>Erickson, Michael J.</creatorcontrib><creatorcontrib>Jeglum, Matthew E.</creatorcontrib><creatorcontrib>Kastman, Joshua</creatorcontrib><creatorcontrib>Nelson, James A.</creatorcontrib><creatorcontrib>Rudack, David E.</creatorcontrib><creatorcontrib>Staudenmaier, Michael J.</creatorcontrib><creatorcontrib>Waldstreicher, Jeff S.</creatorcontrib><title>Innovations in Winter Storm Forecasting and Decision Support Services</title><title>Bulletin of the American Meteorological Society</title><description>Winter storms are disruptive to society and the economy, and they often cause significant injuries and deaths. Innovations in winter storm forecasting have occurred across the value chain over the past two decades, from physical understanding, to observations, to model forecasts, to postprocessing, to forecaster knowledge and interpretation, to products and services, and ultimately to decision support. These innovations enable more accurate and consistent forecasts, which are increasingly being translated into actionable information for decision-makers. This paper reviews the current state of winter storm forecasting in the context of the U.S. National Weather Service operations and describes a potential future state. Given predictability limitations, a key challenge of winter storm forecasting has been characterizing uncertainty and communicating the forecast in ways that are understandable and useful to decision-makers. To address this challenge, particular focus is placed on establishing a probabilistic framework, with probabilistic hazard information serving as a foundation for winter storm decision support services. The framework is guided by social science research to ensure effective communication of risk to meet users’ needs. Solutions to gaps impeding progress in winter storm forecasting are highlighted, including better understanding of mesoscale phenomenon, the need for better ensemble calibration, a rigorous and consistent database of observed impacts, and linking multiparameter probabilities (e.g., probability of intense snowfall rates at rush hour) with users’ information needs and decisions.</description><subject>Communication</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Fatalities</subject><subject>Forecasting</subject><subject>Innovation</subject><subject>Innovations</subject><subject>Mesoscale phenomena</subject><subject>Meteorological services</subject><subject>Precipitation</subject><subject>Probability theory</subject><subject>Public safety</subject><subject>Rain</subject><subject>Risk communication</subject><subject>Scientific research</subject><subject>Snow</subject><subject>Snowfall</subject><subject>Social sciences</subject><subject>Statistical analysis</subject><subject>Storm forecasting</subject><subject>Storms</subject><subject>Support services</subject><subject>Value chains</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Winter</subject><subject>Winter storms</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkM9LwzAYhoMoOKd3jwHPnV-SJmmPcz90MPFQxWNo01QyXFKTdOB_b8s8fbx8D-8LD0L3BBaESP74tHytsnVGaQYg-IJcoBnhFDLIpbxEMwBg4wfkNbqJ8TBFVpAZ2uyc86c6We8itg5_WpdMwFXy4Yi3Phhdx2TdF65di9dG2ziSuBr63oeEKxNOVpt4i666-juau_87Rx_bzfvqJdu_Pe9Wy32mGWEpK4pSaNZILvJG8Ja1tCG5KeuuK0vgXcmlYKA72nJCtWhyrYkUwnBBixwYp2yOHs69ffA_g4lJHfwQ3DipaAGilJwxPlJwpnTwMQbTqT7YYx1-FQE1yVKTLLVWlKpJliLsD33gW8E</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Novak, David R.</creator><creator>Perfater, Sarah E.</creator><creator>Demuth, Julie L.</creator><creator>Bieda, Stephen W.</creator><creator>Carbin, Gregory</creator><creator>Craven, Jeffrey</creator><creator>Erickson, Michael J.</creator><creator>Jeglum, Matthew E.</creator><creator>Kastman, Joshua</creator><creator>Nelson, James A.</creator><creator>Rudack, David E.</creator><creator>Staudenmaier, Michael J.</creator><creator>Waldstreicher, Jeff S.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>202303</creationdate><title>Innovations in Winter Storm Forecasting and Decision Support Services</title><author>Novak, David R. ; Perfater, Sarah E. ; Demuth, Julie L. ; Bieda, Stephen W. ; Carbin, Gregory ; Craven, Jeffrey ; Erickson, Michael J. ; Jeglum, Matthew E. ; Kastman, Joshua ; Nelson, James A. ; Rudack, David E. ; Staudenmaier, Michael J. ; Waldstreicher, Jeff S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-8896c3b7564b65d3d2b14e9aff9905f957630cf2d512c6b4cc1766e5628403523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Communication</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Fatalities</topic><topic>Forecasting</topic><topic>Innovation</topic><topic>Innovations</topic><topic>Mesoscale phenomena</topic><topic>Meteorological services</topic><topic>Precipitation</topic><topic>Probability theory</topic><topic>Public safety</topic><topic>Rain</topic><topic>Risk communication</topic><topic>Scientific research</topic><topic>Snow</topic><topic>Snowfall</topic><topic>Social sciences</topic><topic>Statistical analysis</topic><topic>Storm forecasting</topic><topic>Storms</topic><topic>Support services</topic><topic>Value chains</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Winter</topic><topic>Winter storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Novak, David R.</creatorcontrib><creatorcontrib>Perfater, Sarah E.</creatorcontrib><creatorcontrib>Demuth, Julie L.</creatorcontrib><creatorcontrib>Bieda, Stephen W.</creatorcontrib><creatorcontrib>Carbin, Gregory</creatorcontrib><creatorcontrib>Craven, Jeffrey</creatorcontrib><creatorcontrib>Erickson, Michael J.</creatorcontrib><creatorcontrib>Jeglum, Matthew E.</creatorcontrib><creatorcontrib>Kastman, Joshua</creatorcontrib><creatorcontrib>Nelson, James A.</creatorcontrib><creatorcontrib>Rudack, David E.</creatorcontrib><creatorcontrib>Staudenmaier, Michael J.</creatorcontrib><creatorcontrib>Waldstreicher, Jeff S.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Novak, David R.</au><au>Perfater, Sarah E.</au><au>Demuth, Julie L.</au><au>Bieda, Stephen W.</au><au>Carbin, Gregory</au><au>Craven, Jeffrey</au><au>Erickson, Michael J.</au><au>Jeglum, Matthew E.</au><au>Kastman, Joshua</au><au>Nelson, James A.</au><au>Rudack, David E.</au><au>Staudenmaier, Michael J.</au><au>Waldstreicher, Jeff S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innovations in Winter Storm Forecasting and Decision Support Services</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2023-03</date><risdate>2023</risdate><volume>104</volume><issue>3</issue><spage>E715</spage><epage>E735</epage><pages>E715-E735</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>Winter storms are disruptive to society and the economy, and they often cause significant injuries and deaths. Innovations in winter storm forecasting have occurred across the value chain over the past two decades, from physical understanding, to observations, to model forecasts, to postprocessing, to forecaster knowledge and interpretation, to products and services, and ultimately to decision support. These innovations enable more accurate and consistent forecasts, which are increasingly being translated into actionable information for decision-makers. This paper reviews the current state of winter storm forecasting in the context of the U.S. National Weather Service operations and describes a potential future state. Given predictability limitations, a key challenge of winter storm forecasting has been characterizing uncertainty and communicating the forecast in ways that are understandable and useful to decision-makers. To address this challenge, particular focus is placed on establishing a probabilistic framework, with probabilistic hazard information serving as a foundation for winter storm decision support services. The framework is guided by social science research to ensure effective communication of risk to meet users’ needs. Solutions to gaps impeding progress in winter storm forecasting are highlighted, including better understanding of mesoscale phenomenon, the need for better ensemble calibration, a rigorous and consistent database of observed impacts, and linking multiparameter probabilities (e.g., probability of intense snowfall rates at rush hour) with users’ information needs and decisions.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/BAMS-D-22-0065.1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-0007
ispartof Bulletin of the American Meteorological Society, 2023-03, Vol.104 (3), p.E715-E735
issn 0003-0007
1520-0477
language eng
recordid cdi_proquest_journals_2806975335
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Communication
Decision making
Decision support systems
Fatalities
Forecasting
Innovation
Innovations
Mesoscale phenomena
Meteorological services
Precipitation
Probability theory
Public safety
Rain
Risk communication
Scientific research
Snow
Snowfall
Social sciences
Statistical analysis
Storm forecasting
Storms
Support services
Value chains
Weather
Weather forecasting
Winter
Winter storms
title Innovations in Winter Storm Forecasting and Decision Support Services
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innovations%20in%20Winter%20Storm%20Forecasting%20and%20Decision%20Support%20Services&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Novak,%20David%20R.&rft.date=2023-03&rft.volume=104&rft.issue=3&rft.spage=E715&rft.epage=E735&rft.pages=E715-E735&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/BAMS-D-22-0065.1&rft_dat=%3Cproquest_cross%3E2806975335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806975335&rft_id=info:pmid/&rfr_iscdi=true