Quantitative reverse stress testing, bottom up
We propose a bottom-up quantitative reverse stress testing framework that identifies forward-looking fragilities tailored to a bank's portfolio, credit and funding strategies, models, and calibration constraints. Thus, instead of relying on historical events, we run a Monte Carlo simulation, an...
Gespeichert in:
Veröffentlicht in: | Quantitative finance 2023-05, Vol.23 (5), p.863-875 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 875 |
---|---|
container_issue | 5 |
container_start_page | 863 |
container_title | Quantitative finance |
container_volume | 23 |
creator | Albanese, Claudio Crépey, Stéphane Iabichino, Stefano |
description | We propose a bottom-up quantitative reverse stress testing framework that identifies forward-looking fragilities tailored to a bank's portfolio, credit and funding strategies, models, and calibration constraints. Thus, instead of relying on historical events, we run a Monte Carlo simulation, and we mine those future states that contribute the most to a bank's cost of capital expressed in terms of scenario differential. This approach allows identifying both the systemic and idiosyncratic weaknesses of the bank's portfolio, with applications that include solvency risk, extreme events hedging, liquidity risk management, trading and credit limits, model validation and model risk management. |
doi_str_mv | 10.1080/14697688.2023.2187315 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2806673556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806673556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3741-1124e55d109d1ede2e2e0cb377c9ce9c6316c188ad5ff6f23105fce2c70916953</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKs_QVjw1V0zyeb2phRvUBBBn0OaTWRLu6lJttJ_75at-ibzMMNwvjnDQegScAVY4huouRJcyopgQisCUlBgR2iy35eCK378O0t5is5SWmIMDGM1QdVrb7rcZpPbrSui27qYXJFydCkV2aXcdh_XxSLkHNZFvzlHJ96skrs49Cl6f7h_mz2V85fH59ndvLRU1FACkNox1gBWDbjGkaGwXVAhrLJOWU6BW5DSNMx77gkFzLx1xAqsgCtGp-hqvLuJ4bMf3tDL0MdusNREYs4FZYwPKjaqbAwpRef1JrZrE3casN5Ho3-i0fto9CGagStGztnQtemPkgwYw_WgnaLbUdJ2PsS1-Qpx1ehsdqsQfTSdHTD6v8s3qNxzzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806673556</pqid></control><display><type>article</type><title>Quantitative reverse stress testing, bottom up</title><source>EBSCOhost Business Source Complete</source><source>Taylor & Francis:Master (3349 titles)</source><creator>Albanese, Claudio ; Crépey, Stéphane ; Iabichino, Stefano</creator><creatorcontrib>Albanese, Claudio ; Crépey, Stéphane ; Iabichino, Stefano</creatorcontrib><description>We propose a bottom-up quantitative reverse stress testing framework that identifies forward-looking fragilities tailored to a bank's portfolio, credit and funding strategies, models, and calibration constraints. Thus, instead of relying on historical events, we run a Monte Carlo simulation, and we mine those future states that contribute the most to a bank's cost of capital expressed in terms of scenario differential. This approach allows identifying both the systemic and idiosyncratic weaknesses of the bank's portfolio, with applications that include solvency risk, extreme events hedging, liquidity risk management, trading and credit limits, model validation and model risk management.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697688.2023.2187315</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>Cost of capital (KVA) ; Model risk ; Model validation ; PFE ; Quantitative reverse stress testing ; Trading limits</subject><ispartof>Quantitative finance, 2023-05, Vol.23 (5), p.863-875</ispartof><rights>2023 Informa UK Limited, trading as Taylor & Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3741-1124e55d109d1ede2e2e0cb377c9ce9c6316c188ad5ff6f23105fce2c70916953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/14697688.2023.2187315$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/14697688.2023.2187315$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Albanese, Claudio</creatorcontrib><creatorcontrib>Crépey, Stéphane</creatorcontrib><creatorcontrib>Iabichino, Stefano</creatorcontrib><title>Quantitative reverse stress testing, bottom up</title><title>Quantitative finance</title><description>We propose a bottom-up quantitative reverse stress testing framework that identifies forward-looking fragilities tailored to a bank's portfolio, credit and funding strategies, models, and calibration constraints. Thus, instead of relying on historical events, we run a Monte Carlo simulation, and we mine those future states that contribute the most to a bank's cost of capital expressed in terms of scenario differential. This approach allows identifying both the systemic and idiosyncratic weaknesses of the bank's portfolio, with applications that include solvency risk, extreme events hedging, liquidity risk management, trading and credit limits, model validation and model risk management.</description><subject>Cost of capital (KVA)</subject><subject>Model risk</subject><subject>Model validation</subject><subject>PFE</subject><subject>Quantitative reverse stress testing</subject><subject>Trading limits</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWKs_QVjw1V0zyeb2phRvUBBBn0OaTWRLu6lJttJ_75at-ibzMMNwvjnDQegScAVY4huouRJcyopgQisCUlBgR2iy35eCK378O0t5is5SWmIMDGM1QdVrb7rcZpPbrSui27qYXJFydCkV2aXcdh_XxSLkHNZFvzlHJ96skrs49Cl6f7h_mz2V85fH59ndvLRU1FACkNox1gBWDbjGkaGwXVAhrLJOWU6BW5DSNMx77gkFzLx1xAqsgCtGp-hqvLuJ4bMf3tDL0MdusNREYs4FZYwPKjaqbAwpRef1JrZrE3casN5Ho3-i0fto9CGagStGztnQtemPkgwYw_WgnaLbUdJ2PsS1-Qpx1ehsdqsQfTSdHTD6v8s3qNxzzw</recordid><startdate>20230504</startdate><enddate>20230504</enddate><creator>Albanese, Claudio</creator><creator>Crépey, Stéphane</creator><creator>Iabichino, Stefano</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230504</creationdate><title>Quantitative reverse stress testing, bottom up</title><author>Albanese, Claudio ; Crépey, Stéphane ; Iabichino, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3741-1124e55d109d1ede2e2e0cb377c9ce9c6316c188ad5ff6f23105fce2c70916953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cost of capital (KVA)</topic><topic>Model risk</topic><topic>Model validation</topic><topic>PFE</topic><topic>Quantitative reverse stress testing</topic><topic>Trading limits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albanese, Claudio</creatorcontrib><creatorcontrib>Crépey, Stéphane</creatorcontrib><creatorcontrib>Iabichino, Stefano</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albanese, Claudio</au><au>Crépey, Stéphane</au><au>Iabichino, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative reverse stress testing, bottom up</atitle><jtitle>Quantitative finance</jtitle><date>2023-05-04</date><risdate>2023</risdate><volume>23</volume><issue>5</issue><spage>863</spage><epage>875</epage><pages>863-875</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>We propose a bottom-up quantitative reverse stress testing framework that identifies forward-looking fragilities tailored to a bank's portfolio, credit and funding strategies, models, and calibration constraints. Thus, instead of relying on historical events, we run a Monte Carlo simulation, and we mine those future states that contribute the most to a bank's cost of capital expressed in terms of scenario differential. This approach allows identifying both the systemic and idiosyncratic weaknesses of the bank's portfolio, with applications that include solvency risk, extreme events hedging, liquidity risk management, trading and credit limits, model validation and model risk management.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697688.2023.2187315</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-7688 |
ispartof | Quantitative finance, 2023-05, Vol.23 (5), p.863-875 |
issn | 1469-7688 1469-7696 |
language | eng |
recordid | cdi_proquest_journals_2806673556 |
source | EBSCOhost Business Source Complete; Taylor & Francis:Master (3349 titles) |
subjects | Cost of capital (KVA) Model risk Model validation PFE Quantitative reverse stress testing Trading limits |
title | Quantitative reverse stress testing, bottom up |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20reverse%20stress%20testing,%20bottom%20up&rft.jtitle=Quantitative%20finance&rft.au=Albanese,%20Claudio&rft.date=2023-05-04&rft.volume=23&rft.issue=5&rft.spage=863&rft.epage=875&rft.pages=863-875&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697688.2023.2187315&rft_dat=%3Cproquest_infor%3E2806673556%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806673556&rft_id=info:pmid/&rfr_iscdi=true |