Quantitative reverse stress testing, bottom up

We propose a bottom-up quantitative reverse stress testing framework that identifies forward-looking fragilities tailored to a bank's portfolio, credit and funding strategies, models, and calibration constraints. Thus, instead of relying on historical events, we run a Monte Carlo simulation, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative finance 2023-05, Vol.23 (5), p.863-875
Hauptverfasser: Albanese, Claudio, Crépey, Stéphane, Iabichino, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 875
container_issue 5
container_start_page 863
container_title Quantitative finance
container_volume 23
creator Albanese, Claudio
Crépey, Stéphane
Iabichino, Stefano
description We propose a bottom-up quantitative reverse stress testing framework that identifies forward-looking fragilities tailored to a bank's portfolio, credit and funding strategies, models, and calibration constraints. Thus, instead of relying on historical events, we run a Monte Carlo simulation, and we mine those future states that contribute the most to a bank's cost of capital expressed in terms of scenario differential. This approach allows identifying both the systemic and idiosyncratic weaknesses of the bank's portfolio, with applications that include solvency risk, extreme events hedging, liquidity risk management, trading and credit limits, model validation and model risk management.
doi_str_mv 10.1080/14697688.2023.2187315
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2806673556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806673556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3741-1124e55d109d1ede2e2e0cb377c9ce9c6316c188ad5ff6f23105fce2c70916953</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKs_QVjw1V0zyeb2phRvUBBBn0OaTWRLu6lJttJ_75at-ibzMMNwvjnDQegScAVY4huouRJcyopgQisCUlBgR2iy35eCK378O0t5is5SWmIMDGM1QdVrb7rcZpPbrSui27qYXJFydCkV2aXcdh_XxSLkHNZFvzlHJ96skrs49Cl6f7h_mz2V85fH59ndvLRU1FACkNox1gBWDbjGkaGwXVAhrLJOWU6BW5DSNMx77gkFzLx1xAqsgCtGp-hqvLuJ4bMf3tDL0MdusNREYs4FZYwPKjaqbAwpRef1JrZrE3casN5Ho3-i0fto9CGagStGztnQtemPkgwYw_WgnaLbUdJ2PsS1-Qpx1ehsdqsQfTSdHTD6v8s3qNxzzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806673556</pqid></control><display><type>article</type><title>Quantitative reverse stress testing, bottom up</title><source>EBSCOhost Business Source Complete</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Albanese, Claudio ; Crépey, Stéphane ; Iabichino, Stefano</creator><creatorcontrib>Albanese, Claudio ; Crépey, Stéphane ; Iabichino, Stefano</creatorcontrib><description>We propose a bottom-up quantitative reverse stress testing framework that identifies forward-looking fragilities tailored to a bank's portfolio, credit and funding strategies, models, and calibration constraints. Thus, instead of relying on historical events, we run a Monte Carlo simulation, and we mine those future states that contribute the most to a bank's cost of capital expressed in terms of scenario differential. This approach allows identifying both the systemic and idiosyncratic weaknesses of the bank's portfolio, with applications that include solvency risk, extreme events hedging, liquidity risk management, trading and credit limits, model validation and model risk management.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697688.2023.2187315</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>Cost of capital (KVA) ; Model risk ; Model validation ; PFE ; Quantitative reverse stress testing ; Trading limits</subject><ispartof>Quantitative finance, 2023-05, Vol.23 (5), p.863-875</ispartof><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3741-1124e55d109d1ede2e2e0cb377c9ce9c6316c188ad5ff6f23105fce2c70916953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/14697688.2023.2187315$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/14697688.2023.2187315$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Albanese, Claudio</creatorcontrib><creatorcontrib>Crépey, Stéphane</creatorcontrib><creatorcontrib>Iabichino, Stefano</creatorcontrib><title>Quantitative reverse stress testing, bottom up</title><title>Quantitative finance</title><description>We propose a bottom-up quantitative reverse stress testing framework that identifies forward-looking fragilities tailored to a bank's portfolio, credit and funding strategies, models, and calibration constraints. Thus, instead of relying on historical events, we run a Monte Carlo simulation, and we mine those future states that contribute the most to a bank's cost of capital expressed in terms of scenario differential. This approach allows identifying both the systemic and idiosyncratic weaknesses of the bank's portfolio, with applications that include solvency risk, extreme events hedging, liquidity risk management, trading and credit limits, model validation and model risk management.</description><subject>Cost of capital (KVA)</subject><subject>Model risk</subject><subject>Model validation</subject><subject>PFE</subject><subject>Quantitative reverse stress testing</subject><subject>Trading limits</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWKs_QVjw1V0zyeb2phRvUBBBn0OaTWRLu6lJttJ_75at-ibzMMNwvjnDQegScAVY4huouRJcyopgQisCUlBgR2iy35eCK378O0t5is5SWmIMDGM1QdVrb7rcZpPbrSui27qYXJFydCkV2aXcdh_XxSLkHNZFvzlHJ96skrs49Cl6f7h_mz2V85fH59ndvLRU1FACkNox1gBWDbjGkaGwXVAhrLJOWU6BW5DSNMx77gkFzLx1xAqsgCtGp-hqvLuJ4bMf3tDL0MdusNREYs4FZYwPKjaqbAwpRef1JrZrE3casN5Ho3-i0fto9CGagStGztnQtemPkgwYw_WgnaLbUdJ2PsS1-Qpx1ehsdqsQfTSdHTD6v8s3qNxzzw</recordid><startdate>20230504</startdate><enddate>20230504</enddate><creator>Albanese, Claudio</creator><creator>Crépey, Stéphane</creator><creator>Iabichino, Stefano</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230504</creationdate><title>Quantitative reverse stress testing, bottom up</title><author>Albanese, Claudio ; Crépey, Stéphane ; Iabichino, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3741-1124e55d109d1ede2e2e0cb377c9ce9c6316c188ad5ff6f23105fce2c70916953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cost of capital (KVA)</topic><topic>Model risk</topic><topic>Model validation</topic><topic>PFE</topic><topic>Quantitative reverse stress testing</topic><topic>Trading limits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albanese, Claudio</creatorcontrib><creatorcontrib>Crépey, Stéphane</creatorcontrib><creatorcontrib>Iabichino, Stefano</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albanese, Claudio</au><au>Crépey, Stéphane</au><au>Iabichino, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative reverse stress testing, bottom up</atitle><jtitle>Quantitative finance</jtitle><date>2023-05-04</date><risdate>2023</risdate><volume>23</volume><issue>5</issue><spage>863</spage><epage>875</epage><pages>863-875</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>We propose a bottom-up quantitative reverse stress testing framework that identifies forward-looking fragilities tailored to a bank's portfolio, credit and funding strategies, models, and calibration constraints. Thus, instead of relying on historical events, we run a Monte Carlo simulation, and we mine those future states that contribute the most to a bank's cost of capital expressed in terms of scenario differential. This approach allows identifying both the systemic and idiosyncratic weaknesses of the bank's portfolio, with applications that include solvency risk, extreme events hedging, liquidity risk management, trading and credit limits, model validation and model risk management.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697688.2023.2187315</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-7688
ispartof Quantitative finance, 2023-05, Vol.23 (5), p.863-875
issn 1469-7688
1469-7696
language eng
recordid cdi_proquest_journals_2806673556
source EBSCOhost Business Source Complete; Taylor & Francis:Master (3349 titles)
subjects Cost of capital (KVA)
Model risk
Model validation
PFE
Quantitative reverse stress testing
Trading limits
title Quantitative reverse stress testing, bottom up
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20reverse%20stress%20testing,%20bottom%20up&rft.jtitle=Quantitative%20finance&rft.au=Albanese,%20Claudio&rft.date=2023-05-04&rft.volume=23&rft.issue=5&rft.spage=863&rft.epage=875&rft.pages=863-875&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697688.2023.2187315&rft_dat=%3Cproquest_infor%3E2806673556%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806673556&rft_id=info:pmid/&rfr_iscdi=true