Comparative Life Cycle Assessment and Cost Analysis of the Production of Ti6Al4V-TiC Metal–Matrix Composite Powder by High-Energy Ball Milling and Ti6Al4V Powder by Gas Atomization
Environmental awareness and the necessary reduction in costs in industrial processes has facilitated the development of novel techniques such as Additive Manufacturing, decreasing the amount of raw materials and energy needed. The longing for improved materials with different and enhanced properties...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-04, Vol.15 (8), p.6649 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 6649 |
container_title | Sustainability |
container_volume | 15 |
creator | Santiago-Herrera, Mario Ibáñez, Jesús De Pamphilis, Marco Alegre, Jesús Manuel Tamayo-Ramos, Juan Antonio Martel-Martín, Sonia Barros, Rocío |
description | Environmental awareness and the necessary reduction in costs in industrial processes has facilitated the development of novel techniques such as Additive Manufacturing, decreasing the amount of raw materials and energy needed. The longing for improved materials with different and enhanced properties has resulted in research efforts in the Metal Matrix Composites field. These two novelties combined minimise environmental impacts and costs without compromising technical properties. Two technologies can feed Additive Manufacturing techniques with metallic powder: Gas Atomization and High Energy Ball Milling. This study provides a comparative Life Cycle Assessment of these technologies to produce one kilogram of metallic powder for the Directed Energy Deposition technique: a Ti6Al4V alloy, and a Ti6Al4V-TiC Metal–Matrix Composite, respectively. The LCA methodology is according to ISO 14040:2006, and large amounts of information on the use of raw materials, energy consumption, and environmental impacts is provided. Different impact categories following the Environmental Footprint methodology were analysed, showing a big difference between both technologies, with an 87.8% reduction of kg CO2 eq. emitted by High Energy Ball Milling in comparison with Gas Atomization. In addition, an economic analysis was performed, addressing the viability perspective and decision making and showing a 17.2% cost reduction in the conventional process. |
doi_str_mv | 10.3390/su15086649 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806618627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747540249</galeid><sourcerecordid>A747540249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e3c06286b374c16bd180047a431d8813087cde1e8018f8c32891421c4c51aba43</originalsourceid><addsrcrecordid>eNpVkc9u1DAQxiMEElXbC09giRNIae3Y6zjHEPWftKuiduEaeZ1J6sqJF48DDSfegXfhgXgSst1KtDOHGY1-33zSTJK8Y_SE84Ke4sgWVEkpilfJQUZzljK6oK-f9W-TY8R7OgfnrGDyIPlT-X6rg472O5ClbYFUk3FASkRA7GGIRA8NqTxGUg7aTWiR-JbEOyCfg29GE60fdpO1laUTX9O1rcgKonZ_f_1e6RjsA9l5eLRxlvgfDQSymcil7e7SswFCN5FP2jmyss7ZoXu0e9r1DL_QSMroe_tT7wyPkjetdgjHT_Uw-XJ-tq4u0-X1xVVVLlPDpYopcENlpuSG58IwuWmYolTkWnDWKMU4VblpgIGiTLXK8EwVTGTMCLNgejNjh8n7_d5t8N9GwFjf-zHMd8A6U1RKpmSWz9TJnuq0g9oOrY9Bmzkb6K3xA7R2npe5yBeCZqKYBR9eCGYmwkPs9IhYX93evGQ_7lkTPGKAtt4G2-sw1YzWu7_X___O_wEjn58M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806618627</pqid></control><display><type>article</type><title>Comparative Life Cycle Assessment and Cost Analysis of the Production of Ti6Al4V-TiC Metal–Matrix Composite Powder by High-Energy Ball Milling and Ti6Al4V Powder by Gas Atomization</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Santiago-Herrera, Mario ; Ibáñez, Jesús ; De Pamphilis, Marco ; Alegre, Jesús Manuel ; Tamayo-Ramos, Juan Antonio ; Martel-Martín, Sonia ; Barros, Rocío</creator><creatorcontrib>Santiago-Herrera, Mario ; Ibáñez, Jesús ; De Pamphilis, Marco ; Alegre, Jesús Manuel ; Tamayo-Ramos, Juan Antonio ; Martel-Martín, Sonia ; Barros, Rocío</creatorcontrib><description>Environmental awareness and the necessary reduction in costs in industrial processes has facilitated the development of novel techniques such as Additive Manufacturing, decreasing the amount of raw materials and energy needed. The longing for improved materials with different and enhanced properties has resulted in research efforts in the Metal Matrix Composites field. These two novelties combined minimise environmental impacts and costs without compromising technical properties. Two technologies can feed Additive Manufacturing techniques with metallic powder: Gas Atomization and High Energy Ball Milling. This study provides a comparative Life Cycle Assessment of these technologies to produce one kilogram of metallic powder for the Directed Energy Deposition technique: a Ti6Al4V alloy, and a Ti6Al4V-TiC Metal–Matrix Composite, respectively. The LCA methodology is according to ISO 14040:2006, and large amounts of information on the use of raw materials, energy consumption, and environmental impacts is provided. Different impact categories following the Environmental Footprint methodology were analysed, showing a big difference between both technologies, with an 87.8% reduction of kg CO2 eq. emitted by High Energy Ball Milling in comparison with Gas Atomization. In addition, an economic analysis was performed, addressing the viability perspective and decision making and showing a 17.2% cost reduction in the conventional process.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15086649</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additive manufacturing ; Atomizing ; Ball milling ; Biocompatibility ; Carbon dioxide ; Climate change ; Comparative analysis ; Composite materials ; Corrosion resistance ; Cost analysis ; Decision making ; Economic analysis ; Emission standards ; Emissions ; Emissions (Pollution) ; Energy consumption ; Environmental awareness ; Feed additives ; Food additives ; Gas atomization ; Global temperature changes ; Heat resistance ; Laws, regulations and rules ; Manufacturing ; Mechanical properties ; Metal powders ; Nanocomposites ; Nanoparticles ; Nanostructured materials ; Powder ; Powder metallurgy ; Powders ; Raw materials ; Supply chains ; Titanium alloys</subject><ispartof>Sustainability, 2023-04, Vol.15 (8), p.6649</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e3c06286b374c16bd180047a431d8813087cde1e8018f8c32891421c4c51aba43</citedby><cites>FETCH-LOGICAL-c368t-e3c06286b374c16bd180047a431d8813087cde1e8018f8c32891421c4c51aba43</cites><orcidid>0000-0002-6271-4266 ; 0000-0002-7421-9342 ; 0000-0003-3629-2570 ; 0000-0002-0392-8504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Santiago-Herrera, Mario</creatorcontrib><creatorcontrib>Ibáñez, Jesús</creatorcontrib><creatorcontrib>De Pamphilis, Marco</creatorcontrib><creatorcontrib>Alegre, Jesús Manuel</creatorcontrib><creatorcontrib>Tamayo-Ramos, Juan Antonio</creatorcontrib><creatorcontrib>Martel-Martín, Sonia</creatorcontrib><creatorcontrib>Barros, Rocío</creatorcontrib><title>Comparative Life Cycle Assessment and Cost Analysis of the Production of Ti6Al4V-TiC Metal–Matrix Composite Powder by High-Energy Ball Milling and Ti6Al4V Powder by Gas Atomization</title><title>Sustainability</title><description>Environmental awareness and the necessary reduction in costs in industrial processes has facilitated the development of novel techniques such as Additive Manufacturing, decreasing the amount of raw materials and energy needed. The longing for improved materials with different and enhanced properties has resulted in research efforts in the Metal Matrix Composites field. These two novelties combined minimise environmental impacts and costs without compromising technical properties. Two technologies can feed Additive Manufacturing techniques with metallic powder: Gas Atomization and High Energy Ball Milling. This study provides a comparative Life Cycle Assessment of these technologies to produce one kilogram of metallic powder for the Directed Energy Deposition technique: a Ti6Al4V alloy, and a Ti6Al4V-TiC Metal–Matrix Composite, respectively. The LCA methodology is according to ISO 14040:2006, and large amounts of information on the use of raw materials, energy consumption, and environmental impacts is provided. Different impact categories following the Environmental Footprint methodology were analysed, showing a big difference between both technologies, with an 87.8% reduction of kg CO2 eq. emitted by High Energy Ball Milling in comparison with Gas Atomization. In addition, an economic analysis was performed, addressing the viability perspective and decision making and showing a 17.2% cost reduction in the conventional process.</description><subject>Additive manufacturing</subject><subject>Atomizing</subject><subject>Ball milling</subject><subject>Biocompatibility</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Comparative analysis</subject><subject>Composite materials</subject><subject>Corrosion resistance</subject><subject>Cost analysis</subject><subject>Decision making</subject><subject>Economic analysis</subject><subject>Emission standards</subject><subject>Emissions</subject><subject>Emissions (Pollution)</subject><subject>Energy consumption</subject><subject>Environmental awareness</subject><subject>Feed additives</subject><subject>Food additives</subject><subject>Gas atomization</subject><subject>Global temperature changes</subject><subject>Heat resistance</subject><subject>Laws, regulations and rules</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Metal powders</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanostructured materials</subject><subject>Powder</subject><subject>Powder metallurgy</subject><subject>Powders</subject><subject>Raw materials</subject><subject>Supply chains</subject><subject>Titanium alloys</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkc9u1DAQxiMEElXbC09giRNIae3Y6zjHEPWftKuiduEaeZ1J6sqJF48DDSfegXfhgXgSst1KtDOHGY1-33zSTJK8Y_SE84Ke4sgWVEkpilfJQUZzljK6oK-f9W-TY8R7OgfnrGDyIPlT-X6rg472O5ClbYFUk3FASkRA7GGIRA8NqTxGUg7aTWiR-JbEOyCfg29GE60fdpO1laUTX9O1rcgKonZ_f_1e6RjsA9l5eLRxlvgfDQSymcil7e7SswFCN5FP2jmyss7ZoXu0e9r1DL_QSMroe_tT7wyPkjetdgjHT_Uw-XJ-tq4u0-X1xVVVLlPDpYopcENlpuSG58IwuWmYolTkWnDWKMU4VblpgIGiTLXK8EwVTGTMCLNgejNjh8n7_d5t8N9GwFjf-zHMd8A6U1RKpmSWz9TJnuq0g9oOrY9Bmzkb6K3xA7R2npe5yBeCZqKYBR9eCGYmwkPs9IhYX93evGQ_7lkTPGKAtt4G2-sw1YzWu7_X___O_wEjn58M</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Santiago-Herrera, Mario</creator><creator>Ibáñez, Jesús</creator><creator>De Pamphilis, Marco</creator><creator>Alegre, Jesús Manuel</creator><creator>Tamayo-Ramos, Juan Antonio</creator><creator>Martel-Martín, Sonia</creator><creator>Barros, Rocío</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6271-4266</orcidid><orcidid>https://orcid.org/0000-0002-7421-9342</orcidid><orcidid>https://orcid.org/0000-0003-3629-2570</orcidid><orcidid>https://orcid.org/0000-0002-0392-8504</orcidid></search><sort><creationdate>20230401</creationdate><title>Comparative Life Cycle Assessment and Cost Analysis of the Production of Ti6Al4V-TiC Metal–Matrix Composite Powder by High-Energy Ball Milling and Ti6Al4V Powder by Gas Atomization</title><author>Santiago-Herrera, Mario ; Ibáñez, Jesús ; De Pamphilis, Marco ; Alegre, Jesús Manuel ; Tamayo-Ramos, Juan Antonio ; Martel-Martín, Sonia ; Barros, Rocío</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e3c06286b374c16bd180047a431d8813087cde1e8018f8c32891421c4c51aba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additive manufacturing</topic><topic>Atomizing</topic><topic>Ball milling</topic><topic>Biocompatibility</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Comparative analysis</topic><topic>Composite materials</topic><topic>Corrosion resistance</topic><topic>Cost analysis</topic><topic>Decision making</topic><topic>Economic analysis</topic><topic>Emission standards</topic><topic>Emissions</topic><topic>Emissions (Pollution)</topic><topic>Energy consumption</topic><topic>Environmental awareness</topic><topic>Feed additives</topic><topic>Food additives</topic><topic>Gas atomization</topic><topic>Global temperature changes</topic><topic>Heat resistance</topic><topic>Laws, regulations and rules</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Metal powders</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanostructured materials</topic><topic>Powder</topic><topic>Powder metallurgy</topic><topic>Powders</topic><topic>Raw materials</topic><topic>Supply chains</topic><topic>Titanium alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santiago-Herrera, Mario</creatorcontrib><creatorcontrib>Ibáñez, Jesús</creatorcontrib><creatorcontrib>De Pamphilis, Marco</creatorcontrib><creatorcontrib>Alegre, Jesús Manuel</creatorcontrib><creatorcontrib>Tamayo-Ramos, Juan Antonio</creatorcontrib><creatorcontrib>Martel-Martín, Sonia</creatorcontrib><creatorcontrib>Barros, Rocío</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santiago-Herrera, Mario</au><au>Ibáñez, Jesús</au><au>De Pamphilis, Marco</au><au>Alegre, Jesús Manuel</au><au>Tamayo-Ramos, Juan Antonio</au><au>Martel-Martín, Sonia</au><au>Barros, Rocío</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Life Cycle Assessment and Cost Analysis of the Production of Ti6Al4V-TiC Metal–Matrix Composite Powder by High-Energy Ball Milling and Ti6Al4V Powder by Gas Atomization</atitle><jtitle>Sustainability</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>15</volume><issue>8</issue><spage>6649</spage><pages>6649-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Environmental awareness and the necessary reduction in costs in industrial processes has facilitated the development of novel techniques such as Additive Manufacturing, decreasing the amount of raw materials and energy needed. The longing for improved materials with different and enhanced properties has resulted in research efforts in the Metal Matrix Composites field. These two novelties combined minimise environmental impacts and costs without compromising technical properties. Two technologies can feed Additive Manufacturing techniques with metallic powder: Gas Atomization and High Energy Ball Milling. This study provides a comparative Life Cycle Assessment of these technologies to produce one kilogram of metallic powder for the Directed Energy Deposition technique: a Ti6Al4V alloy, and a Ti6Al4V-TiC Metal–Matrix Composite, respectively. The LCA methodology is according to ISO 14040:2006, and large amounts of information on the use of raw materials, energy consumption, and environmental impacts is provided. Different impact categories following the Environmental Footprint methodology were analysed, showing a big difference between both technologies, with an 87.8% reduction of kg CO2 eq. emitted by High Energy Ball Milling in comparison with Gas Atomization. In addition, an economic analysis was performed, addressing the viability perspective and decision making and showing a 17.2% cost reduction in the conventional process.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15086649</doi><orcidid>https://orcid.org/0000-0002-6271-4266</orcidid><orcidid>https://orcid.org/0000-0002-7421-9342</orcidid><orcidid>https://orcid.org/0000-0003-3629-2570</orcidid><orcidid>https://orcid.org/0000-0002-0392-8504</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2023-04, Vol.15 (8), p.6649 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2806618627 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Additive manufacturing Atomizing Ball milling Biocompatibility Carbon dioxide Climate change Comparative analysis Composite materials Corrosion resistance Cost analysis Decision making Economic analysis Emission standards Emissions Emissions (Pollution) Energy consumption Environmental awareness Feed additives Food additives Gas atomization Global temperature changes Heat resistance Laws, regulations and rules Manufacturing Mechanical properties Metal powders Nanocomposites Nanoparticles Nanostructured materials Powder Powder metallurgy Powders Raw materials Supply chains Titanium alloys |
title | Comparative Life Cycle Assessment and Cost Analysis of the Production of Ti6Al4V-TiC Metal–Matrix Composite Powder by High-Energy Ball Milling and Ti6Al4V Powder by Gas Atomization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Life%20Cycle%20Assessment%20and%20Cost%20Analysis%20of%20the%20Production%20of%20Ti6Al4V-TiC%20Metal%E2%80%93Matrix%20Composite%20Powder%20by%20High-Energy%20Ball%20Milling%20and%20Ti6Al4V%20Powder%20by%20Gas%20Atomization&rft.jtitle=Sustainability&rft.au=Santiago-Herrera,%20Mario&rft.date=2023-04-01&rft.volume=15&rft.issue=8&rft.spage=6649&rft.pages=6649-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15086649&rft_dat=%3Cgale_proqu%3EA747540249%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806618627&rft_id=info:pmid/&rft_galeid=A747540249&rfr_iscdi=true |