On Equivalence between Kinetic Equations and Geodesic Equations in Spaces with Affine Connection
Discrete kinetic equations describing binary processes of agglomeration and fragmentation are considered using formal equivalence between the kinetic equations and the geodesic equations of some affinely connected space A associated with the kinetic equation and called the kinetic space of affine co...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2023-04, Vol.15 (4), p.905 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 905 |
container_title | Symmetry (Basel) |
container_volume | 15 |
creator | Shapovalov, Alexander V. |
description | Discrete kinetic equations describing binary processes of agglomeration and fragmentation are considered using formal equivalence between the kinetic equations and the geodesic equations of some affinely connected space A associated with the kinetic equation and called the kinetic space of affine connection. The geometric properties of equations are treated locally in some coordinate chart (x;U). The peculiarity of the space A is that in the coordinates (x) of some selected local chart, the Christoffel symbols defining the affine connection of the space A are constant. Examples of the Smoluchowski equation for agglomeration processes without fragmentation and the exchange-driven growth equation are considered for small dimensions in terms of geodesic equations. When fragmentation is taken into account, the kinetic equations can be written as equations of quasigeodesics. Particular cases of spaces with symmetries are discussed. |
doi_str_mv | 10.3390/sym15040905 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806611226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752154023</galeid><sourcerecordid>A752154023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-916903306fd683fd710e67e4af59ea76e41bb3b66d48993720e41d16f6ea15403</originalsourceid><addsrcrecordid>eNpVUE1PwzAMjRBITGMn_kAkjqjgfDRdj9M0BmLSDsC5pKkDmbZkazqm_XtSjcOwD7ae33uWTcgtgwchSniMxw3LQUIJ-QUZcChENi5LeXnWX5NRjCtIkUMuFQzI59LT2W7vfvQavUFaY3dA9PTVeeyc6We6c8FHqn1D5xgajP9g5-nbVhuM9OC6bzqxNinpNHiPpmfckCur1xFHf3VIPp5m79PnbLGcv0wni8wIUXRZyVQJQoCyjRoL2xQMUBUotc1L1IVCyepa1Eo1Mh0iCg4JaZiyCjXLJYghuTv5btuw22PsqlXYtz6trPgYlGKMc5VYDyfWV7q3ct6GrtUmZYMbZ4JH6xI-KXLem3KRBPcngWlDjC3aatu6jW6PFYOqf3t19nbxC0CwdAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806611226</pqid></control><display><type>article</type><title>On Equivalence between Kinetic Equations and Geodesic Equations in Spaces with Affine Connection</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shapovalov, Alexander V.</creator><creatorcontrib>Shapovalov, Alexander V.</creatorcontrib><description>Discrete kinetic equations describing binary processes of agglomeration and fragmentation are considered using formal equivalence between the kinetic equations and the geodesic equations of some affinely connected space A associated with the kinetic equation and called the kinetic space of affine connection. The geometric properties of equations are treated locally in some coordinate chart (x;U). The peculiarity of the space A is that in the coordinates (x) of some selected local chart, the Christoffel symbols defining the affine connection of the space A are constant. Examples of the Smoluchowski equation for agglomeration processes without fragmentation and the exchange-driven growth equation are considered for small dimensions in terms of geodesic equations. When fragmentation is taken into account, the kinetic equations can be written as equations of quasigeodesics. Particular cases of spaces with symmetries are discussed.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym15040905</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agglomeration ; Charts ; Equivalence ; Fragmentation ; Kinetic equations ; Kinetics ; Mathematical analysis</subject><ispartof>Symmetry (Basel), 2023-04, Vol.15 (4), p.905</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-916903306fd683fd710e67e4af59ea76e41bb3b66d48993720e41d16f6ea15403</citedby><cites>FETCH-LOGICAL-c337t-916903306fd683fd710e67e4af59ea76e41bb3b66d48993720e41d16f6ea15403</cites><orcidid>0000-0003-2170-1503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shapovalov, Alexander V.</creatorcontrib><title>On Equivalence between Kinetic Equations and Geodesic Equations in Spaces with Affine Connection</title><title>Symmetry (Basel)</title><description>Discrete kinetic equations describing binary processes of agglomeration and fragmentation are considered using formal equivalence between the kinetic equations and the geodesic equations of some affinely connected space A associated with the kinetic equation and called the kinetic space of affine connection. The geometric properties of equations are treated locally in some coordinate chart (x;U). The peculiarity of the space A is that in the coordinates (x) of some selected local chart, the Christoffel symbols defining the affine connection of the space A are constant. Examples of the Smoluchowski equation for agglomeration processes without fragmentation and the exchange-driven growth equation are considered for small dimensions in terms of geodesic equations. When fragmentation is taken into account, the kinetic equations can be written as equations of quasigeodesics. Particular cases of spaces with symmetries are discussed.</description><subject>Agglomeration</subject><subject>Charts</subject><subject>Equivalence</subject><subject>Fragmentation</subject><subject>Kinetic equations</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVUE1PwzAMjRBITGMn_kAkjqjgfDRdj9M0BmLSDsC5pKkDmbZkazqm_XtSjcOwD7ae33uWTcgtgwchSniMxw3LQUIJ-QUZcChENi5LeXnWX5NRjCtIkUMuFQzI59LT2W7vfvQavUFaY3dA9PTVeeyc6We6c8FHqn1D5xgajP9g5-nbVhuM9OC6bzqxNinpNHiPpmfckCur1xFHf3VIPp5m79PnbLGcv0wni8wIUXRZyVQJQoCyjRoL2xQMUBUotc1L1IVCyepa1Eo1Mh0iCg4JaZiyCjXLJYghuTv5btuw22PsqlXYtz6trPgYlGKMc5VYDyfWV7q3ct6GrtUmZYMbZ4JH6xI-KXLem3KRBPcngWlDjC3aatu6jW6PFYOqf3t19nbxC0CwdAQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Shapovalov, Alexander V.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2170-1503</orcidid></search><sort><creationdate>20230401</creationdate><title>On Equivalence between Kinetic Equations and Geodesic Equations in Spaces with Affine Connection</title><author>Shapovalov, Alexander V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-916903306fd683fd710e67e4af59ea76e41bb3b66d48993720e41d16f6ea15403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agglomeration</topic><topic>Charts</topic><topic>Equivalence</topic><topic>Fragmentation</topic><topic>Kinetic equations</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shapovalov, Alexander V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shapovalov, Alexander V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Equivalence between Kinetic Equations and Geodesic Equations in Spaces with Affine Connection</atitle><jtitle>Symmetry (Basel)</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>905</spage><pages>905-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Discrete kinetic equations describing binary processes of agglomeration and fragmentation are considered using formal equivalence between the kinetic equations and the geodesic equations of some affinely connected space A associated with the kinetic equation and called the kinetic space of affine connection. The geometric properties of equations are treated locally in some coordinate chart (x;U). The peculiarity of the space A is that in the coordinates (x) of some selected local chart, the Christoffel symbols defining the affine connection of the space A are constant. Examples of the Smoluchowski equation for agglomeration processes without fragmentation and the exchange-driven growth equation are considered for small dimensions in terms of geodesic equations. When fragmentation is taken into account, the kinetic equations can be written as equations of quasigeodesics. Particular cases of spaces with symmetries are discussed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym15040905</doi><orcidid>https://orcid.org/0000-0003-2170-1503</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2023-04, Vol.15 (4), p.905 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_proquest_journals_2806611226 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Agglomeration Charts Equivalence Fragmentation Kinetic equations Kinetics Mathematical analysis |
title | On Equivalence between Kinetic Equations and Geodesic Equations in Spaces with Affine Connection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Equivalence%20between%20Kinetic%20Equations%20and%20Geodesic%20Equations%20in%20Spaces%20with%20Affine%20Connection&rft.jtitle=Symmetry%20(Basel)&rft.au=Shapovalov,%20Alexander%20V.&rft.date=2023-04-01&rft.volume=15&rft.issue=4&rft.spage=905&rft.pages=905-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym15040905&rft_dat=%3Cgale_proqu%3EA752154023%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806611226&rft_id=info:pmid/&rft_galeid=A752154023&rfr_iscdi=true |