Object detection for pattern analysis of consumer behaviour to optimise store layout

One of the crucial aspects of conventional retailing is the store layout as it is a critical aspect affecting consumer behaviour. This study explores the relationship between consumer behaviour and retail layout optimization with the help of data visualization through the use of close circuit video...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Santoso, H. Z., Irawan, H., Widiyanesti, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2646
creator Santoso, H. Z.
Irawan, H.
Widiyanesti, S.
description One of the crucial aspects of conventional retailing is the store layout as it is a critical aspect affecting consumer behaviour. This study explores the relationship between consumer behaviour and retail layout optimization with the help of data visualization through the use of close circuit video or CCTV gathered from online data repositories. This study uses computer vision model such as image recognition and tracking to measure the interaction between in-store customer with the store layout. This research assessed whether the model fit for the task by conducting series of test scenarios using data identical to what it would be in real-world business operation. In the scenario, the videos were divided into 120-seconds of snapshots to be processed to map the consumer interaction metrics and gauge how well the model fare to measure consumer behaviour. Post-simulation of the research shows that the tracking model used in the research is in-line with management theories and is usable to improve business activities, especially in analysing how effective the consumer-layout interaction works. The model also performs optimally and can operate in typical business situation as it able to provide insight that can be used for layout optimization.
doi_str_mv 10.1063/5.0139753
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2806611150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806611150</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-102852c0ff970bd4a466444e2e323d3382bc533855aa852050bc1b471b267f303</originalsourceid><addsrcrecordid>eNp9kEtLAzEYRYMoWKsL_0HAnTD1y3NmllJ8QaGbCu5CMpNgSjsZk0xh_r1TWnDn6mwOl3svQvcEFgQkexILIKwuBbtAMyIEKUpJ5CWaAdS8oJx9XaOblLYAtC7LaoY2a7O1TcatzRN86LALEfc6Zxs7rDu9G5NPODjchC4Nexuxsd_64MMQcQ449NnvfbI45RAt3ukxDPkWXTm9S_buzDn6fH3ZLN-L1frtY_m8Knoiq1wQoJWgDThXl2BarrmUnHNLLaOsZayiphEThNB6EkGAaYjhJTFUlo4Bm6OHU24fw89gU1bbqdbUOSlagZSEEHG0Hk9WanzWx42qj36v46gIqONrSqjza__JhxD_RNW3jv0CI3RtIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2806611150</pqid></control><display><type>conference_proceeding</type><title>Object detection for pattern analysis of consumer behaviour to optimise store layout</title><source>AIP Journals Complete</source><creator>Santoso, H. Z. ; Irawan, H. ; Widiyanesti, S.</creator><contributor>Helios, Muhammad Penta ; Aji, Sudi Dul ; Triawan, Farid ; Miharja, Deni ; Rinanti, Astri ; Abdullah, Ade Gafar ; Rohadi, Erfan</contributor><creatorcontrib>Santoso, H. Z. ; Irawan, H. ; Widiyanesti, S. ; Helios, Muhammad Penta ; Aji, Sudi Dul ; Triawan, Farid ; Miharja, Deni ; Rinanti, Astri ; Abdullah, Ade Gafar ; Rohadi, Erfan</creatorcontrib><description>One of the crucial aspects of conventional retailing is the store layout as it is a critical aspect affecting consumer behaviour. This study explores the relationship between consumer behaviour and retail layout optimization with the help of data visualization through the use of close circuit video or CCTV gathered from online data repositories. This study uses computer vision model such as image recognition and tracking to measure the interaction between in-store customer with the store layout. This research assessed whether the model fit for the task by conducting series of test scenarios using data identical to what it would be in real-world business operation. In the scenario, the videos were divided into 120-seconds of snapshots to be processed to map the consumer interaction metrics and gauge how well the model fare to measure consumer behaviour. Post-simulation of the research shows that the tracking model used in the research is in-line with management theories and is usable to improve business activities, especially in analysing how effective the consumer-layout interaction works. The model also performs optimally and can operate in typical business situation as it able to provide insight that can be used for layout optimization.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0139753</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Circuits ; Computer vision ; Consumer behavior ; Layouts ; Object recognition ; Optimization ; Pattern analysis ; Retailing ; Scientific visualization ; Tracking</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2646 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0139753$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Helios, Muhammad Penta</contributor><contributor>Aji, Sudi Dul</contributor><contributor>Triawan, Farid</contributor><contributor>Miharja, Deni</contributor><contributor>Rinanti, Astri</contributor><contributor>Abdullah, Ade Gafar</contributor><contributor>Rohadi, Erfan</contributor><creatorcontrib>Santoso, H. Z.</creatorcontrib><creatorcontrib>Irawan, H.</creatorcontrib><creatorcontrib>Widiyanesti, S.</creatorcontrib><title>Object detection for pattern analysis of consumer behaviour to optimise store layout</title><title>AIP Conference Proceedings</title><description>One of the crucial aspects of conventional retailing is the store layout as it is a critical aspect affecting consumer behaviour. This study explores the relationship between consumer behaviour and retail layout optimization with the help of data visualization through the use of close circuit video or CCTV gathered from online data repositories. This study uses computer vision model such as image recognition and tracking to measure the interaction between in-store customer with the store layout. This research assessed whether the model fit for the task by conducting series of test scenarios using data identical to what it would be in real-world business operation. In the scenario, the videos were divided into 120-seconds of snapshots to be processed to map the consumer interaction metrics and gauge how well the model fare to measure consumer behaviour. Post-simulation of the research shows that the tracking model used in the research is in-line with management theories and is usable to improve business activities, especially in analysing how effective the consumer-layout interaction works. The model also performs optimally and can operate in typical business situation as it able to provide insight that can be used for layout optimization.</description><subject>Circuits</subject><subject>Computer vision</subject><subject>Consumer behavior</subject><subject>Layouts</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Pattern analysis</subject><subject>Retailing</subject><subject>Scientific visualization</subject><subject>Tracking</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEYRYMoWKsL_0HAnTD1y3NmllJ8QaGbCu5CMpNgSjsZk0xh_r1TWnDn6mwOl3svQvcEFgQkexILIKwuBbtAMyIEKUpJ5CWaAdS8oJx9XaOblLYAtC7LaoY2a7O1TcatzRN86LALEfc6Zxs7rDu9G5NPODjchC4Nexuxsd_64MMQcQ449NnvfbI45RAt3ukxDPkWXTm9S_buzDn6fH3ZLN-L1frtY_m8Knoiq1wQoJWgDThXl2BarrmUnHNLLaOsZayiphEThNB6EkGAaYjhJTFUlo4Bm6OHU24fw89gU1bbqdbUOSlagZSEEHG0Hk9WanzWx42qj36v46gIqONrSqjza__JhxD_RNW3jv0CI3RtIg</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Santoso, H. Z.</creator><creator>Irawan, H.</creator><creator>Widiyanesti, S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230427</creationdate><title>Object detection for pattern analysis of consumer behaviour to optimise store layout</title><author>Santoso, H. Z. ; Irawan, H. ; Widiyanesti, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-102852c0ff970bd4a466444e2e323d3382bc533855aa852050bc1b471b267f303</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuits</topic><topic>Computer vision</topic><topic>Consumer behavior</topic><topic>Layouts</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Pattern analysis</topic><topic>Retailing</topic><topic>Scientific visualization</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santoso, H. Z.</creatorcontrib><creatorcontrib>Irawan, H.</creatorcontrib><creatorcontrib>Widiyanesti, S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santoso, H. Z.</au><au>Irawan, H.</au><au>Widiyanesti, S.</au><au>Helios, Muhammad Penta</au><au>Aji, Sudi Dul</au><au>Triawan, Farid</au><au>Miharja, Deni</au><au>Rinanti, Astri</au><au>Abdullah, Ade Gafar</au><au>Rohadi, Erfan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Object detection for pattern analysis of consumer behaviour to optimise store layout</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-04-27</date><risdate>2023</risdate><volume>2646</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>One of the crucial aspects of conventional retailing is the store layout as it is a critical aspect affecting consumer behaviour. This study explores the relationship between consumer behaviour and retail layout optimization with the help of data visualization through the use of close circuit video or CCTV gathered from online data repositories. This study uses computer vision model such as image recognition and tracking to measure the interaction between in-store customer with the store layout. This research assessed whether the model fit for the task by conducting series of test scenarios using data identical to what it would be in real-world business operation. In the scenario, the videos were divided into 120-seconds of snapshots to be processed to map the consumer interaction metrics and gauge how well the model fare to measure consumer behaviour. Post-simulation of the research shows that the tracking model used in the research is in-line with management theories and is usable to improve business activities, especially in analysing how effective the consumer-layout interaction works. The model also performs optimally and can operate in typical business situation as it able to provide insight that can be used for layout optimization.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0139753</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2646 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2806611150
source AIP Journals Complete
subjects Circuits
Computer vision
Consumer behavior
Layouts
Object recognition
Optimization
Pattern analysis
Retailing
Scientific visualization
Tracking
title Object detection for pattern analysis of consumer behaviour to optimise store layout
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Object%20detection%20for%20pattern%20analysis%20of%20consumer%20behaviour%20to%20optimise%20store%20layout&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Santoso,%20H.%20Z.&rft.date=2023-04-27&rft.volume=2646&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0139753&rft_dat=%3Cproquest_scita%3E2806611150%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806611150&rft_id=info:pmid/&rfr_iscdi=true