Estimating Reed Bed Cover in Hungarian Fish Ponds Using NDVI-Based Remote Sensing Technique

In the EU, aquaculture ponds cover an area of 360,000 ha and are a crucial part of the rural landscape. As many ecosystem services (e.g., habitats for protected wildlife, nutrient cycling, etc.) are correlated with the proportion of reed beds relative to open-water areas, it is important in environm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2023-04, Vol.15 (8), p.1554
Hauptverfasser: Sharma, Priya, Varga, Monika, Kerezsi, György, Kajári, Balázs, Halasi-Kovács, Béla, Békefi, Emese, Gaál, Márta, Gyalog, Gergő
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1554
container_title Water (Basel)
container_volume 15
creator Sharma, Priya
Varga, Monika
Kerezsi, György
Kajári, Balázs
Halasi-Kovács, Béla
Békefi, Emese
Gaál, Márta
Gyalog, Gergő
description In the EU, aquaculture ponds cover an area of 360,000 ha and are a crucial part of the rural landscape. As many ecosystem services (e.g., habitats for protected wildlife, nutrient cycling, etc.) are correlated with the proportion of reed beds relative to open-water areas, it is important in environmental studies to be able to accurately estimate the extent and the temporal dynamics of reed cover. Here, we propose a method for mapping reed cover in fish ponds from freely available Sentinel-2 imagery using the normalized difference vegetation index (NDVI), which we applied to Hungary, the third largest carp producer in the EU. The dynamics of reed cover in Hungarian fish ponds mapped using satellite imagery show a high degree of agreement with the ground-truth points, and when compared with data reported in the annual aquaculture reports for Hungary, it was found that the calculation of reed cover based on the NDVI-based approach was more consistent than the estimates provided in the report. We discuss possible applications of this remote sensing technique in estimating reed-like vegetation cover in fish ponds and the possible use of the results for climate change studies and ecosystem services assessment.
doi_str_mv 10.3390/w15081554
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806609384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752312448</galeid><sourcerecordid>A752312448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7737ebb83ad97d611bd06c8624ba291c6ae6ae23eca61cbb2683442bae8905ee3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhjdGEwly8B808eRhsV_b7R4BQUiIGgQvHjbd7gAl0GK7aPz3FjHGTpuZzDxvJ3mT5JrgLmMFvvskGZYky_hZ0qI4ZynnnJz_qy-TTggbHA8vpMxwK3kbhsbsVGPsCs0AatSPb-A-wCNj0fhgV8obZdHIhDV6drYOaBGO8OP96yTtqxDxGexcA-gF7M9kDnptzfsBrpKLpdoG6PzmdrIYDeeDcTp9epgMetNU04I0aZ6zHKpKMlUXeS0IqWostBSUVyoCWiiIlzLQShBdVVRIxjmtFMgCZwCsndyc_t17F9eGpty4g7dxZUklFgIXTPJIdU_USm2hNHbpGq90jBp2RjsLSxP7vTyjjFDOZRTcngTauxA8LMu9j1b5r5Lg8uh3-ec3-waeLXBR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806609384</pqid></control><display><type>article</type><title>Estimating Reed Bed Cover in Hungarian Fish Ponds Using NDVI-Based Remote Sensing Technique</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sharma, Priya ; Varga, Monika ; Kerezsi, György ; Kajári, Balázs ; Halasi-Kovács, Béla ; Békefi, Emese ; Gaál, Márta ; Gyalog, Gergő</creator><creatorcontrib>Sharma, Priya ; Varga, Monika ; Kerezsi, György ; Kajári, Balázs ; Halasi-Kovács, Béla ; Békefi, Emese ; Gaál, Márta ; Gyalog, Gergő</creatorcontrib><description>In the EU, aquaculture ponds cover an area of 360,000 ha and are a crucial part of the rural landscape. As many ecosystem services (e.g., habitats for protected wildlife, nutrient cycling, etc.) are correlated with the proportion of reed beds relative to open-water areas, it is important in environmental studies to be able to accurately estimate the extent and the temporal dynamics of reed cover. Here, we propose a method for mapping reed cover in fish ponds from freely available Sentinel-2 imagery using the normalized difference vegetation index (NDVI), which we applied to Hungary, the third largest carp producer in the EU. The dynamics of reed cover in Hungarian fish ponds mapped using satellite imagery show a high degree of agreement with the ground-truth points, and when compared with data reported in the annual aquaculture reports for Hungary, it was found that the calculation of reed cover based on the NDVI-based approach was more consistent than the estimates provided in the report. We discuss possible applications of this remote sensing technique in estimating reed-like vegetation cover in fish ponds and the possible use of the results for climate change studies and ecosystem services assessment.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w15081554</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agriculture ; Algorithms ; Aquaculture ; Aquaculture industry ; Aquatic plants ; Automation ; Carbon sequestration ; Carp ; Classification ; Climate change ; Climate studies ; Climatic changes ; Ecosystem services ; Ecosystems ; Environmental studies ; Farmers ; Farms ; Fish ponds ; Fish production ; Fishes ; Infrastructure ; Machine learning ; Methods ; Normalized difference vegetative index ; Nutrient cycles ; Phenology ; Ponds ; Reed beds ; Regions ; Remote sensing ; Satellite imagery ; Unmanned aerial vehicles ; Vegetation ; Vegetation cover ; Wildlife ; Wildlife conservation ; Wildlife habitats</subject><ispartof>Water (Basel), 2023-04, Vol.15 (8), p.1554</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-7737ebb83ad97d611bd06c8624ba291c6ae6ae23eca61cbb2683442bae8905ee3</cites><orcidid>0000-0002-5707-1876 ; 0000-0002-6912-615X ; 0000-0002-1070-3039 ; 0000-0002-6886-5751 ; 0000-0002-1255-2158 ; 0000-0002-3778-203X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sharma, Priya</creatorcontrib><creatorcontrib>Varga, Monika</creatorcontrib><creatorcontrib>Kerezsi, György</creatorcontrib><creatorcontrib>Kajári, Balázs</creatorcontrib><creatorcontrib>Halasi-Kovács, Béla</creatorcontrib><creatorcontrib>Békefi, Emese</creatorcontrib><creatorcontrib>Gaál, Márta</creatorcontrib><creatorcontrib>Gyalog, Gergő</creatorcontrib><title>Estimating Reed Bed Cover in Hungarian Fish Ponds Using NDVI-Based Remote Sensing Technique</title><title>Water (Basel)</title><description>In the EU, aquaculture ponds cover an area of 360,000 ha and are a crucial part of the rural landscape. As many ecosystem services (e.g., habitats for protected wildlife, nutrient cycling, etc.) are correlated with the proportion of reed beds relative to open-water areas, it is important in environmental studies to be able to accurately estimate the extent and the temporal dynamics of reed cover. Here, we propose a method for mapping reed cover in fish ponds from freely available Sentinel-2 imagery using the normalized difference vegetation index (NDVI), which we applied to Hungary, the third largest carp producer in the EU. The dynamics of reed cover in Hungarian fish ponds mapped using satellite imagery show a high degree of agreement with the ground-truth points, and when compared with data reported in the annual aquaculture reports for Hungary, it was found that the calculation of reed cover based on the NDVI-based approach was more consistent than the estimates provided in the report. We discuss possible applications of this remote sensing technique in estimating reed-like vegetation cover in fish ponds and the possible use of the results for climate change studies and ecosystem services assessment.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Aquaculture</subject><subject>Aquaculture industry</subject><subject>Aquatic plants</subject><subject>Automation</subject><subject>Carbon sequestration</subject><subject>Carp</subject><subject>Classification</subject><subject>Climate change</subject><subject>Climate studies</subject><subject>Climatic changes</subject><subject>Ecosystem services</subject><subject>Ecosystems</subject><subject>Environmental studies</subject><subject>Farmers</subject><subject>Farms</subject><subject>Fish ponds</subject><subject>Fish production</subject><subject>Fishes</subject><subject>Infrastructure</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Normalized difference vegetative index</subject><subject>Nutrient cycles</subject><subject>Phenology</subject><subject>Ponds</subject><subject>Reed beds</subject><subject>Regions</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Unmanned aerial vehicles</subject><subject>Vegetation</subject><subject>Vegetation cover</subject><subject>Wildlife</subject><subject>Wildlife conservation</subject><subject>Wildlife habitats</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkE1PAjEQhjdGEwly8B808eRhsV_b7R4BQUiIGgQvHjbd7gAl0GK7aPz3FjHGTpuZzDxvJ3mT5JrgLmMFvvskGZYky_hZ0qI4ZynnnJz_qy-TTggbHA8vpMxwK3kbhsbsVGPsCs0AatSPb-A-wCNj0fhgV8obZdHIhDV6drYOaBGO8OP96yTtqxDxGexcA-gF7M9kDnptzfsBrpKLpdoG6PzmdrIYDeeDcTp9epgMetNU04I0aZ6zHKpKMlUXeS0IqWostBSUVyoCWiiIlzLQShBdVVRIxjmtFMgCZwCsndyc_t17F9eGpty4g7dxZUklFgIXTPJIdU_USm2hNHbpGq90jBp2RjsLSxP7vTyjjFDOZRTcngTauxA8LMu9j1b5r5Lg8uh3-ec3-waeLXBR</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Sharma, Priya</creator><creator>Varga, Monika</creator><creator>Kerezsi, György</creator><creator>Kajári, Balázs</creator><creator>Halasi-Kovács, Béla</creator><creator>Békefi, Emese</creator><creator>Gaál, Márta</creator><creator>Gyalog, Gergő</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5707-1876</orcidid><orcidid>https://orcid.org/0000-0002-6912-615X</orcidid><orcidid>https://orcid.org/0000-0002-1070-3039</orcidid><orcidid>https://orcid.org/0000-0002-6886-5751</orcidid><orcidid>https://orcid.org/0000-0002-1255-2158</orcidid><orcidid>https://orcid.org/0000-0002-3778-203X</orcidid></search><sort><creationdate>20230401</creationdate><title>Estimating Reed Bed Cover in Hungarian Fish Ponds Using NDVI-Based Remote Sensing Technique</title><author>Sharma, Priya ; Varga, Monika ; Kerezsi, György ; Kajári, Balázs ; Halasi-Kovács, Béla ; Békefi, Emese ; Gaál, Márta ; Gyalog, Gergő</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7737ebb83ad97d611bd06c8624ba291c6ae6ae23eca61cbb2683442bae8905ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Aquaculture</topic><topic>Aquaculture industry</topic><topic>Aquatic plants</topic><topic>Automation</topic><topic>Carbon sequestration</topic><topic>Carp</topic><topic>Classification</topic><topic>Climate change</topic><topic>Climate studies</topic><topic>Climatic changes</topic><topic>Ecosystem services</topic><topic>Ecosystems</topic><topic>Environmental studies</topic><topic>Farmers</topic><topic>Farms</topic><topic>Fish ponds</topic><topic>Fish production</topic><topic>Fishes</topic><topic>Infrastructure</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Normalized difference vegetative index</topic><topic>Nutrient cycles</topic><topic>Phenology</topic><topic>Ponds</topic><topic>Reed beds</topic><topic>Regions</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Unmanned aerial vehicles</topic><topic>Vegetation</topic><topic>Vegetation cover</topic><topic>Wildlife</topic><topic>Wildlife conservation</topic><topic>Wildlife habitats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Priya</creatorcontrib><creatorcontrib>Varga, Monika</creatorcontrib><creatorcontrib>Kerezsi, György</creatorcontrib><creatorcontrib>Kajári, Balázs</creatorcontrib><creatorcontrib>Halasi-Kovács, Béla</creatorcontrib><creatorcontrib>Békefi, Emese</creatorcontrib><creatorcontrib>Gaál, Márta</creatorcontrib><creatorcontrib>Gyalog, Gergő</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Priya</au><au>Varga, Monika</au><au>Kerezsi, György</au><au>Kajári, Balázs</au><au>Halasi-Kovács, Béla</au><au>Békefi, Emese</au><au>Gaál, Márta</au><au>Gyalog, Gergő</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Reed Bed Cover in Hungarian Fish Ponds Using NDVI-Based Remote Sensing Technique</atitle><jtitle>Water (Basel)</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>15</volume><issue>8</issue><spage>1554</spage><pages>1554-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>In the EU, aquaculture ponds cover an area of 360,000 ha and are a crucial part of the rural landscape. As many ecosystem services (e.g., habitats for protected wildlife, nutrient cycling, etc.) are correlated with the proportion of reed beds relative to open-water areas, it is important in environmental studies to be able to accurately estimate the extent and the temporal dynamics of reed cover. Here, we propose a method for mapping reed cover in fish ponds from freely available Sentinel-2 imagery using the normalized difference vegetation index (NDVI), which we applied to Hungary, the third largest carp producer in the EU. The dynamics of reed cover in Hungarian fish ponds mapped using satellite imagery show a high degree of agreement with the ground-truth points, and when compared with data reported in the annual aquaculture reports for Hungary, it was found that the calculation of reed cover based on the NDVI-based approach was more consistent than the estimates provided in the report. We discuss possible applications of this remote sensing technique in estimating reed-like vegetation cover in fish ponds and the possible use of the results for climate change studies and ecosystem services assessment.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w15081554</doi><orcidid>https://orcid.org/0000-0002-5707-1876</orcidid><orcidid>https://orcid.org/0000-0002-6912-615X</orcidid><orcidid>https://orcid.org/0000-0002-1070-3039</orcidid><orcidid>https://orcid.org/0000-0002-6886-5751</orcidid><orcidid>https://orcid.org/0000-0002-1255-2158</orcidid><orcidid>https://orcid.org/0000-0002-3778-203X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2023-04, Vol.15 (8), p.1554
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2806609384
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Agriculture
Algorithms
Aquaculture
Aquaculture industry
Aquatic plants
Automation
Carbon sequestration
Carp
Classification
Climate change
Climate studies
Climatic changes
Ecosystem services
Ecosystems
Environmental studies
Farmers
Farms
Fish ponds
Fish production
Fishes
Infrastructure
Machine learning
Methods
Normalized difference vegetative index
Nutrient cycles
Phenology
Ponds
Reed beds
Regions
Remote sensing
Satellite imagery
Unmanned aerial vehicles
Vegetation
Vegetation cover
Wildlife
Wildlife conservation
Wildlife habitats
title Estimating Reed Bed Cover in Hungarian Fish Ponds Using NDVI-Based Remote Sensing Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Reed%20Bed%20Cover%20in%20Hungarian%20Fish%20Ponds%20Using%20NDVI-Based%20Remote%20Sensing%20Technique&rft.jtitle=Water%20(Basel)&rft.au=Sharma,%20Priya&rft.date=2023-04-01&rft.volume=15&rft.issue=8&rft.spage=1554&rft.pages=1554-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w15081554&rft_dat=%3Cgale_proqu%3EA752312448%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806609384&rft_id=info:pmid/&rft_galeid=A752312448&rfr_iscdi=true