Assessment of ERA5-Land Data in Medium-Term Drinking Water Demand Modelling with Deep Learning
Drinking water demand modelling and forecasting is a crucial task for sustainable management and planning of water supply systems. Despite many short-term investigations, the medium-term problem needs better exploration, particularly the analysis and assessment of meteorological data for forecasting...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2023-04, Vol.15 (8), p.1495 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1495 |
container_title | Water (Basel) |
container_volume | 15 |
creator | Dhawan, Pranav Dalla Torre, Daniele Zanfei, Ariele Menapace, Andrea Larcher, Michele Righetti, Maurizio |
description | Drinking water demand modelling and forecasting is a crucial task for sustainable management and planning of water supply systems. Despite many short-term investigations, the medium-term problem needs better exploration, particularly the analysis and assessment of meteorological data for forecasting drinking water demand. This work proposes to analyse the suitability of ERA5-Land reanalysis data as weather input in water demand modelling. A multivariate deep learning model based on the long short-term memory architecture is used in this study over a prediction horizon ranging from seven days to two months. The performance of the model, fed by ground station data and ERA5-Land data, is compared and analysed. Close-to-operative forecasting is then presented using observed data for training and ERA5-Land dataset for testing. The results highlight the reliability of the proposed architecture fed by ERA5-Land data for different time horizons. In particular, the ERA5-Land shows promising performance as input of the multivariate machine learning forecasting model, although some meteorological biases are present, which can be improved, especially in close-to-operative application with bias correction techniques. The proposed study leads to practical implications in the use of regional climate model outputs to support drinking water forecasting for sustainable and efficient management of water distribution systems. |
doi_str_mv | 10.3390/w15081495 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806609014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752312389</galeid><sourcerecordid>A752312389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-86053a7e82c95c8b79cdc58c68544ebe89ea32a2a0d32caf88773d7fc340b9b13</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNQe_AcLnjyk7meyewxt_YAUQSreDJvNpG5tNnU3pfjvTamIM4cZHt53Bl6ErimZcq7J3YFKoqjQ8gyNGMl4IoSg5__2SzSJcUOGElopSUboPY8RYmzB97hr8OIll0lhfI3npjfYebyE2u3bZAWhxfPg_Kfza_xmegh4Du1Ruexq2G6P-OD6j4HCDhdggh_QFbpozDbC5HeO0ev9YjV7TIrnh6dZXiSWc9onKiWSmwwUs1paVWXa1lYqmyopBFSgNBjODDOk5syaRqks43XWWC5IpSvKx-jmdHcXuq89xL7cdPvgh5clUyRNiSZUDKrpSbU2Wyidb7o-GDt0Da2znYfGDTzPJOOUcaUHw-3JYEMXY4Cm3AXXmvBdUlIeIy__Iuc_tsJw9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806609014</pqid></control><display><type>article</type><title>Assessment of ERA5-Land Data in Medium-Term Drinking Water Demand Modelling with Deep Learning</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dhawan, Pranav ; Dalla Torre, Daniele ; Zanfei, Ariele ; Menapace, Andrea ; Larcher, Michele ; Righetti, Maurizio</creator><creatorcontrib>Dhawan, Pranav ; Dalla Torre, Daniele ; Zanfei, Ariele ; Menapace, Andrea ; Larcher, Michele ; Righetti, Maurizio</creatorcontrib><description>Drinking water demand modelling and forecasting is a crucial task for sustainable management and planning of water supply systems. Despite many short-term investigations, the medium-term problem needs better exploration, particularly the analysis and assessment of meteorological data for forecasting drinking water demand. This work proposes to analyse the suitability of ERA5-Land reanalysis data as weather input in water demand modelling. A multivariate deep learning model based on the long short-term memory architecture is used in this study over a prediction horizon ranging from seven days to two months. The performance of the model, fed by ground station data and ERA5-Land data, is compared and analysed. Close-to-operative forecasting is then presented using observed data for training and ERA5-Land dataset for testing. The results highlight the reliability of the proposed architecture fed by ERA5-Land data for different time horizons. In particular, the ERA5-Land shows promising performance as input of the multivariate machine learning forecasting model, although some meteorological biases are present, which can be improved, especially in close-to-operative application with bias correction techniques. The proposed study leads to practical implications in the use of regional climate model outputs to support drinking water forecasting for sustainable and efficient management of water distribution systems.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w15081495</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Bias ; Case studies ; Climate change ; Climate models ; Computer architecture ; Datasets ; Deep learning ; Drinking water ; Forecasting ; Ground stations ; Humidity ; Long short-term memory ; Machine learning ; Management ; Meteorological data ; Multivariate analysis ; Neural networks ; Precipitation ; Rain ; Real property ; Sustainability management ; Time series ; Valuation ; Water ; Water conveyance ; Water demand ; Water distribution ; Water distribution systems ; Water engineering ; Water management ; Water shortages ; Water supply ; Water supply systems ; Weather ; Weather forecasting</subject><ispartof>Water (Basel), 2023-04, Vol.15 (8), p.1495</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-86053a7e82c95c8b79cdc58c68544ebe89ea32a2a0d32caf88773d7fc340b9b13</citedby><cites>FETCH-LOGICAL-c331t-86053a7e82c95c8b79cdc58c68544ebe89ea32a2a0d32caf88773d7fc340b9b13</cites><orcidid>0000-0002-3335-6682 ; 0000-0001-6897-9487 ; 0000-0002-7929-0316 ; 0000-0003-0778-9721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dhawan, Pranav</creatorcontrib><creatorcontrib>Dalla Torre, Daniele</creatorcontrib><creatorcontrib>Zanfei, Ariele</creatorcontrib><creatorcontrib>Menapace, Andrea</creatorcontrib><creatorcontrib>Larcher, Michele</creatorcontrib><creatorcontrib>Righetti, Maurizio</creatorcontrib><title>Assessment of ERA5-Land Data in Medium-Term Drinking Water Demand Modelling with Deep Learning</title><title>Water (Basel)</title><description>Drinking water demand modelling and forecasting is a crucial task for sustainable management and planning of water supply systems. Despite many short-term investigations, the medium-term problem needs better exploration, particularly the analysis and assessment of meteorological data for forecasting drinking water demand. This work proposes to analyse the suitability of ERA5-Land reanalysis data as weather input in water demand modelling. A multivariate deep learning model based on the long short-term memory architecture is used in this study over a prediction horizon ranging from seven days to two months. The performance of the model, fed by ground station data and ERA5-Land data, is compared and analysed. Close-to-operative forecasting is then presented using observed data for training and ERA5-Land dataset for testing. The results highlight the reliability of the proposed architecture fed by ERA5-Land data for different time horizons. In particular, the ERA5-Land shows promising performance as input of the multivariate machine learning forecasting model, although some meteorological biases are present, which can be improved, especially in close-to-operative application with bias correction techniques. The proposed study leads to practical implications in the use of regional climate model outputs to support drinking water forecasting for sustainable and efficient management of water distribution systems.</description><subject>Algorithms</subject><subject>Bias</subject><subject>Case studies</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Computer architecture</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Drinking water</subject><subject>Forecasting</subject><subject>Ground stations</subject><subject>Humidity</subject><subject>Long short-term memory</subject><subject>Machine learning</subject><subject>Management</subject><subject>Meteorological data</subject><subject>Multivariate analysis</subject><subject>Neural networks</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Real property</subject><subject>Sustainability management</subject><subject>Time series</subject><subject>Valuation</subject><subject>Water</subject><subject>Water conveyance</subject><subject>Water demand</subject><subject>Water distribution</subject><subject>Water distribution systems</subject><subject>Water engineering</subject><subject>Water management</subject><subject>Water shortages</subject><subject>Water supply</subject><subject>Water supply systems</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkE1Lw0AQhhdRsNQe_AcLnjyk7meyewxt_YAUQSreDJvNpG5tNnU3pfjvTamIM4cZHt53Bl6ErimZcq7J3YFKoqjQ8gyNGMl4IoSg5__2SzSJcUOGElopSUboPY8RYmzB97hr8OIll0lhfI3npjfYebyE2u3bZAWhxfPg_Kfza_xmegh4Du1Ruexq2G6P-OD6j4HCDhdggh_QFbpozDbC5HeO0ev9YjV7TIrnh6dZXiSWc9onKiWSmwwUs1paVWXa1lYqmyopBFSgNBjODDOk5syaRqks43XWWC5IpSvKx-jmdHcXuq89xL7cdPvgh5clUyRNiSZUDKrpSbU2Wyidb7o-GDt0Da2znYfGDTzPJOOUcaUHw-3JYEMXY4Cm3AXXmvBdUlIeIy__Iuc_tsJw9A</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Dhawan, Pranav</creator><creator>Dalla Torre, Daniele</creator><creator>Zanfei, Ariele</creator><creator>Menapace, Andrea</creator><creator>Larcher, Michele</creator><creator>Righetti, Maurizio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3335-6682</orcidid><orcidid>https://orcid.org/0000-0001-6897-9487</orcidid><orcidid>https://orcid.org/0000-0002-7929-0316</orcidid><orcidid>https://orcid.org/0000-0003-0778-9721</orcidid></search><sort><creationdate>20230401</creationdate><title>Assessment of ERA5-Land Data in Medium-Term Drinking Water Demand Modelling with Deep Learning</title><author>Dhawan, Pranav ; Dalla Torre, Daniele ; Zanfei, Ariele ; Menapace, Andrea ; Larcher, Michele ; Righetti, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-86053a7e82c95c8b79cdc58c68544ebe89ea32a2a0d32caf88773d7fc340b9b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bias</topic><topic>Case studies</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Computer architecture</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Drinking water</topic><topic>Forecasting</topic><topic>Ground stations</topic><topic>Humidity</topic><topic>Long short-term memory</topic><topic>Machine learning</topic><topic>Management</topic><topic>Meteorological data</topic><topic>Multivariate analysis</topic><topic>Neural networks</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Real property</topic><topic>Sustainability management</topic><topic>Time series</topic><topic>Valuation</topic><topic>Water</topic><topic>Water conveyance</topic><topic>Water demand</topic><topic>Water distribution</topic><topic>Water distribution systems</topic><topic>Water engineering</topic><topic>Water management</topic><topic>Water shortages</topic><topic>Water supply</topic><topic>Water supply systems</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhawan, Pranav</creatorcontrib><creatorcontrib>Dalla Torre, Daniele</creatorcontrib><creatorcontrib>Zanfei, Ariele</creatorcontrib><creatorcontrib>Menapace, Andrea</creatorcontrib><creatorcontrib>Larcher, Michele</creatorcontrib><creatorcontrib>Righetti, Maurizio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhawan, Pranav</au><au>Dalla Torre, Daniele</au><au>Zanfei, Ariele</au><au>Menapace, Andrea</au><au>Larcher, Michele</au><au>Righetti, Maurizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of ERA5-Land Data in Medium-Term Drinking Water Demand Modelling with Deep Learning</atitle><jtitle>Water (Basel)</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>15</volume><issue>8</issue><spage>1495</spage><pages>1495-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Drinking water demand modelling and forecasting is a crucial task for sustainable management and planning of water supply systems. Despite many short-term investigations, the medium-term problem needs better exploration, particularly the analysis and assessment of meteorological data for forecasting drinking water demand. This work proposes to analyse the suitability of ERA5-Land reanalysis data as weather input in water demand modelling. A multivariate deep learning model based on the long short-term memory architecture is used in this study over a prediction horizon ranging from seven days to two months. The performance of the model, fed by ground station data and ERA5-Land data, is compared and analysed. Close-to-operative forecasting is then presented using observed data for training and ERA5-Land dataset for testing. The results highlight the reliability of the proposed architecture fed by ERA5-Land data for different time horizons. In particular, the ERA5-Land shows promising performance as input of the multivariate machine learning forecasting model, although some meteorological biases are present, which can be improved, especially in close-to-operative application with bias correction techniques. The proposed study leads to practical implications in the use of regional climate model outputs to support drinking water forecasting for sustainable and efficient management of water distribution systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w15081495</doi><orcidid>https://orcid.org/0000-0002-3335-6682</orcidid><orcidid>https://orcid.org/0000-0001-6897-9487</orcidid><orcidid>https://orcid.org/0000-0002-7929-0316</orcidid><orcidid>https://orcid.org/0000-0003-0778-9721</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2023-04, Vol.15 (8), p.1495 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2806609014 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Bias Case studies Climate change Climate models Computer architecture Datasets Deep learning Drinking water Forecasting Ground stations Humidity Long short-term memory Machine learning Management Meteorological data Multivariate analysis Neural networks Precipitation Rain Real property Sustainability management Time series Valuation Water Water conveyance Water demand Water distribution Water distribution systems Water engineering Water management Water shortages Water supply Water supply systems Weather Weather forecasting |
title | Assessment of ERA5-Land Data in Medium-Term Drinking Water Demand Modelling with Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20ERA5-Land%20Data%20in%20Medium-Term%20Drinking%20Water%20Demand%20Modelling%20with%20Deep%20Learning&rft.jtitle=Water%20(Basel)&rft.au=Dhawan,%20Pranav&rft.date=2023-04-01&rft.volume=15&rft.issue=8&rft.spage=1495&rft.pages=1495-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w15081495&rft_dat=%3Cgale_proqu%3EA752312389%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806609014&rft_id=info:pmid/&rft_galeid=A752312389&rfr_iscdi=true |