A Novel High-Voltage Gain Step-Up DC–DC Converter with Maximum Power Point Tracker for Solar Photovoltaic Systems
In order to generate electricity from solar PV modules, this study proposed a novel high-voltage gain step-up (HVGSU) DC–DC converter for solar photovoltaic system operation with a maximum power point (MPP) tracker. The PV array can supply power to the load via a DC–DC converter, increasing the outp...
Gespeichert in:
Veröffentlicht in: | Processes 2023-04, Vol.11 (4), p.1087 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1087 |
container_title | Processes |
container_volume | 11 |
creator | Khan, Rashid Ahmed Liu, Hwa-Dong Lin, Chang-Hua Lu, Shiue-Der Yang, Shih-Jen Sarwar, Adil |
description | In order to generate electricity from solar PV modules, this study proposed a novel high-voltage gain step-up (HVGSU) DC–DC converter for solar photovoltaic system operation with a maximum power point (MPP) tracker. The PV array can supply power to the load via a DC–DC converter, increasing the output voltage. Due to the stochastic nature of solar energy, PV arrays must use the MPPT control approach to function at the MPP. This study suggests a novel HVGSU converter that uses the primary boost conversion cell and combines switched capacitors and voltage multiplier cells. The proposed topology is upgradeable for high-voltage gain step-up and can be incorporated as well. A clamp circuit reuses the energy that leaks out so that the switch voltage stress and power loss are kept to a minimum. One thing that makes it stand out is that the voltage stress on the diodes and switch stays low and constant even as the duty cycle changes. Additionally, the inductor greatly reduces the diodes’ reverse recovery losses. There is a lot of information about steady-state analyses, operation principles, and design guidelines. A prototype circuit is built to test the maximum power point tracking operation with voltage conversion from 20–40 V to 380 V at 150 W. The results of the experiments support the theoretical analysis and claimed benefits. The proposed converter has the ability to track the maximum power point and a high conversion efficiency over a wide range of power. A weighted efficiency of 90–96% is shown by the prototype. |
doi_str_mv | 10.3390/pr11041087 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806581332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747470398</galeid><sourcerecordid>A747470398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-3451e9fcee21053ce41b8d4e6549b40faba9147be4bd3ae30c8f6486c2cec4b3</originalsourceid><addsrcrecordid>eNpNUctOwzAQtBBIoNILX2CJG1KKHTuvYxWgRSoPqYVr5Lib1iWJg-229MY_8Id8Ca6KBLuH3R3N7Go1CF1QMmAsI9edoZRwStLkCJ2FYZgEWUKT43_9KepbuyI-MsrSKD5Ddogf9QZqPFaLZfCqaycWgEdCtXjqoAteOnyTf39-3eQ41-0GjAODt8ot8YP4UM26wc9666FnrVqHZ0bINz9V2uCproXHl9rpzX6tkni6sw4ae45OKlFb6P_WHprd3c7ycTB5Gt3nw0kgGeMuYDyikFUSIKQkYhI4LdM5hzjiWclJJUqRUZ6UwMs5E8CITKuYp7EMJUhesh66PKztjH5fg3XFSq9N6y8WYUriKKWMhZ41OLAWooZCtZV2_gmfc2iU1C1UyuPDhPskLEu94OogkEZba6AqOqMaYXYFJcXeh-LPB_YDSV17Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806581332</pqid></control><display><type>article</type><title>A Novel High-Voltage Gain Step-Up DC–DC Converter with Maximum Power Point Tracker for Solar Photovoltaic Systems</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Khan, Rashid Ahmed ; Liu, Hwa-Dong ; Lin, Chang-Hua ; Lu, Shiue-Der ; Yang, Shih-Jen ; Sarwar, Adil</creator><creatorcontrib>Khan, Rashid Ahmed ; Liu, Hwa-Dong ; Lin, Chang-Hua ; Lu, Shiue-Der ; Yang, Shih-Jen ; Sarwar, Adil</creatorcontrib><description>In order to generate electricity from solar PV modules, this study proposed a novel high-voltage gain step-up (HVGSU) DC–DC converter for solar photovoltaic system operation with a maximum power point (MPP) tracker. The PV array can supply power to the load via a DC–DC converter, increasing the output voltage. Due to the stochastic nature of solar energy, PV arrays must use the MPPT control approach to function at the MPP. This study suggests a novel HVGSU converter that uses the primary boost conversion cell and combines switched capacitors and voltage multiplier cells. The proposed topology is upgradeable for high-voltage gain step-up and can be incorporated as well. A clamp circuit reuses the energy that leaks out so that the switch voltage stress and power loss are kept to a minimum. One thing that makes it stand out is that the voltage stress on the diodes and switch stays low and constant even as the duty cycle changes. Additionally, the inductor greatly reduces the diodes’ reverse recovery losses. There is a lot of information about steady-state analyses, operation principles, and design guidelines. A prototype circuit is built to test the maximum power point tracking operation with voltage conversion from 20–40 V to 380 V at 150 W. The results of the experiments support the theoretical analysis and claimed benefits. The proposed converter has the ability to track the maximum power point and a high conversion efficiency over a wide range of power. A weighted efficiency of 90–96% is shown by the prototype.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11041087</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Analysis ; Arrays ; Capacitors ; Circuit design ; Efficiency ; Electric current converters ; Energy conversion efficiency ; Fossil fuels ; Fuel cells ; High voltages ; Load ; Maximum power tracking ; Photovoltaic cells ; Prototypes ; Renewable resources ; Solar energy ; Solar energy industry ; Topology ; Voltage ; Voltage converters (DC to DC) ; Voltage gain</subject><ispartof>Processes, 2023-04, Vol.11 (4), p.1087</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-3451e9fcee21053ce41b8d4e6549b40faba9147be4bd3ae30c8f6486c2cec4b3</citedby><cites>FETCH-LOGICAL-c334t-3451e9fcee21053ce41b8d4e6549b40faba9147be4bd3ae30c8f6486c2cec4b3</cites><orcidid>0000-0002-2262-3132 ; 0000-0001-5316-2888 ; 0000-0002-8614-6697 ; 0000-0002-7194-0038 ; 0000-0002-0273-3916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Khan, Rashid Ahmed</creatorcontrib><creatorcontrib>Liu, Hwa-Dong</creatorcontrib><creatorcontrib>Lin, Chang-Hua</creatorcontrib><creatorcontrib>Lu, Shiue-Der</creatorcontrib><creatorcontrib>Yang, Shih-Jen</creatorcontrib><creatorcontrib>Sarwar, Adil</creatorcontrib><title>A Novel High-Voltage Gain Step-Up DC–DC Converter with Maximum Power Point Tracker for Solar Photovoltaic Systems</title><title>Processes</title><description>In order to generate electricity from solar PV modules, this study proposed a novel high-voltage gain step-up (HVGSU) DC–DC converter for solar photovoltaic system operation with a maximum power point (MPP) tracker. The PV array can supply power to the load via a DC–DC converter, increasing the output voltage. Due to the stochastic nature of solar energy, PV arrays must use the MPPT control approach to function at the MPP. This study suggests a novel HVGSU converter that uses the primary boost conversion cell and combines switched capacitors and voltage multiplier cells. The proposed topology is upgradeable for high-voltage gain step-up and can be incorporated as well. A clamp circuit reuses the energy that leaks out so that the switch voltage stress and power loss are kept to a minimum. One thing that makes it stand out is that the voltage stress on the diodes and switch stays low and constant even as the duty cycle changes. Additionally, the inductor greatly reduces the diodes’ reverse recovery losses. There is a lot of information about steady-state analyses, operation principles, and design guidelines. A prototype circuit is built to test the maximum power point tracking operation with voltage conversion from 20–40 V to 380 V at 150 W. The results of the experiments support the theoretical analysis and claimed benefits. The proposed converter has the ability to track the maximum power point and a high conversion efficiency over a wide range of power. A weighted efficiency of 90–96% is shown by the prototype.</description><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Arrays</subject><subject>Capacitors</subject><subject>Circuit design</subject><subject>Efficiency</subject><subject>Electric current converters</subject><subject>Energy conversion efficiency</subject><subject>Fossil fuels</subject><subject>Fuel cells</subject><subject>High voltages</subject><subject>Load</subject><subject>Maximum power tracking</subject><subject>Photovoltaic cells</subject><subject>Prototypes</subject><subject>Renewable resources</subject><subject>Solar energy</subject><subject>Solar energy industry</subject><subject>Topology</subject><subject>Voltage</subject><subject>Voltage converters (DC to DC)</subject><subject>Voltage gain</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUctOwzAQtBBIoNILX2CJG1KKHTuvYxWgRSoPqYVr5Lib1iWJg-229MY_8Id8Ca6KBLuH3R3N7Go1CF1QMmAsI9edoZRwStLkCJ2FYZgEWUKT43_9KepbuyI-MsrSKD5Ddogf9QZqPFaLZfCqaycWgEdCtXjqoAteOnyTf39-3eQ41-0GjAODt8ot8YP4UM26wc9666FnrVqHZ0bINz9V2uCproXHl9rpzX6tkni6sw4ae45OKlFb6P_WHprd3c7ycTB5Gt3nw0kgGeMuYDyikFUSIKQkYhI4LdM5hzjiWclJJUqRUZ6UwMs5E8CITKuYp7EMJUhesh66PKztjH5fg3XFSq9N6y8WYUriKKWMhZ41OLAWooZCtZV2_gmfc2iU1C1UyuPDhPskLEu94OogkEZba6AqOqMaYXYFJcXeh-LPB_YDSV17Hg</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Khan, Rashid Ahmed</creator><creator>Liu, Hwa-Dong</creator><creator>Lin, Chang-Hua</creator><creator>Lu, Shiue-Der</creator><creator>Yang, Shih-Jen</creator><creator>Sarwar, Adil</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-2262-3132</orcidid><orcidid>https://orcid.org/0000-0001-5316-2888</orcidid><orcidid>https://orcid.org/0000-0002-8614-6697</orcidid><orcidid>https://orcid.org/0000-0002-7194-0038</orcidid><orcidid>https://orcid.org/0000-0002-0273-3916</orcidid></search><sort><creationdate>20230401</creationdate><title>A Novel High-Voltage Gain Step-Up DC–DC Converter with Maximum Power Point Tracker for Solar Photovoltaic Systems</title><author>Khan, Rashid Ahmed ; Liu, Hwa-Dong ; Lin, Chang-Hua ; Lu, Shiue-Der ; Yang, Shih-Jen ; Sarwar, Adil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-3451e9fcee21053ce41b8d4e6549b40faba9147be4bd3ae30c8f6486c2cec4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Arrays</topic><topic>Capacitors</topic><topic>Circuit design</topic><topic>Efficiency</topic><topic>Electric current converters</topic><topic>Energy conversion efficiency</topic><topic>Fossil fuels</topic><topic>Fuel cells</topic><topic>High voltages</topic><topic>Load</topic><topic>Maximum power tracking</topic><topic>Photovoltaic cells</topic><topic>Prototypes</topic><topic>Renewable resources</topic><topic>Solar energy</topic><topic>Solar energy industry</topic><topic>Topology</topic><topic>Voltage</topic><topic>Voltage converters (DC to DC)</topic><topic>Voltage gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Rashid Ahmed</creatorcontrib><creatorcontrib>Liu, Hwa-Dong</creatorcontrib><creatorcontrib>Lin, Chang-Hua</creatorcontrib><creatorcontrib>Lu, Shiue-Der</creatorcontrib><creatorcontrib>Yang, Shih-Jen</creatorcontrib><creatorcontrib>Sarwar, Adil</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Rashid Ahmed</au><au>Liu, Hwa-Dong</au><au>Lin, Chang-Hua</au><au>Lu, Shiue-Der</au><au>Yang, Shih-Jen</au><au>Sarwar, Adil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel High-Voltage Gain Step-Up DC–DC Converter with Maximum Power Point Tracker for Solar Photovoltaic Systems</atitle><jtitle>Processes</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>11</volume><issue>4</issue><spage>1087</spage><pages>1087-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>In order to generate electricity from solar PV modules, this study proposed a novel high-voltage gain step-up (HVGSU) DC–DC converter for solar photovoltaic system operation with a maximum power point (MPP) tracker. The PV array can supply power to the load via a DC–DC converter, increasing the output voltage. Due to the stochastic nature of solar energy, PV arrays must use the MPPT control approach to function at the MPP. This study suggests a novel HVGSU converter that uses the primary boost conversion cell and combines switched capacitors and voltage multiplier cells. The proposed topology is upgradeable for high-voltage gain step-up and can be incorporated as well. A clamp circuit reuses the energy that leaks out so that the switch voltage stress and power loss are kept to a minimum. One thing that makes it stand out is that the voltage stress on the diodes and switch stays low and constant even as the duty cycle changes. Additionally, the inductor greatly reduces the diodes’ reverse recovery losses. There is a lot of information about steady-state analyses, operation principles, and design guidelines. A prototype circuit is built to test the maximum power point tracking operation with voltage conversion from 20–40 V to 380 V at 150 W. The results of the experiments support the theoretical analysis and claimed benefits. The proposed converter has the ability to track the maximum power point and a high conversion efficiency over a wide range of power. A weighted efficiency of 90–96% is shown by the prototype.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11041087</doi><orcidid>https://orcid.org/0000-0002-2262-3132</orcidid><orcidid>https://orcid.org/0000-0001-5316-2888</orcidid><orcidid>https://orcid.org/0000-0002-8614-6697</orcidid><orcidid>https://orcid.org/0000-0002-7194-0038</orcidid><orcidid>https://orcid.org/0000-0002-0273-3916</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-04, Vol.11 (4), p.1087 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2806581332 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Alternative energy sources Analysis Arrays Capacitors Circuit design Efficiency Electric current converters Energy conversion efficiency Fossil fuels Fuel cells High voltages Load Maximum power tracking Photovoltaic cells Prototypes Renewable resources Solar energy Solar energy industry Topology Voltage Voltage converters (DC to DC) Voltage gain |
title | A Novel High-Voltage Gain Step-Up DC–DC Converter with Maximum Power Point Tracker for Solar Photovoltaic Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20High-Voltage%20Gain%20Step-Up%20DC%E2%80%93DC%20Converter%20with%20Maximum%20Power%20Point%20Tracker%20for%20Solar%20Photovoltaic%20Systems&rft.jtitle=Processes&rft.au=Khan,%20Rashid%20Ahmed&rft.date=2023-04-01&rft.volume=11&rft.issue=4&rft.spage=1087&rft.pages=1087-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11041087&rft_dat=%3Cgale_proqu%3EA747470398%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806581332&rft_id=info:pmid/&rft_galeid=A747470398&rfr_iscdi=true |