State Estimation in a Biodigester via Nonlinear Logistic Observer: Theoretical and Simulation Approach
The state variables in a biodigester are predicted using an unstructured model, and this study offers an analytical design of a Non-Linear Logistic Observer (NLLO), subsequently comparing its performance to that of other prominent state estimators. Because of variables such as temperature, pH, high...
Gespeichert in:
Veröffentlicht in: | Processes 2023-04, Vol.11 (4), p.1234 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1234 |
container_title | Processes |
container_volume | 11 |
creator | Rodríguez-Mata, Abraham Efraím Gómez-Vidal, Emanuel Lucho-Constantino, Carlos Alexander Medrano-Hermosillo, Jesús A. Baray-Arana, Rogelio López-Pérez, Pablo A. |
description | The state variables in a biodigester are predicted using an unstructured model, and this study offers an analytical design of a Non-Linear Logistic Observer (NLLO), subsequently comparing its performance to that of other prominent state estimators. Because of variables such as temperature, pH, high pressure, volumetric organic load (VOC), and hydraulic retention time (HRT), among others, biodigester samples can be affected by the use of physical sensors, which are not always practical owing to their sensitivity to the type of sampling and external disturbances. The use of virtual sensors represents one approach to solving this issue. In this work, we suggest experimentally validating a mathematical model, then analytically designing a novel NLLO observer, and finally comparing the results to those obtained using a sliding-mode estimator and a Luenberger observer. By including online CH4 and CO2 measurements as inputs to the proposed observer, the local observability analysis demonstrated that all state variables were recoverable. After showing how well the suggested observer performs in numerical experiments, a proof based on the Lyapunov theory is offered. The primary innovation of this study is the incorporation of a novel algorithm that has been empirically validated and has output resilience to input parametric perturbations. |
doi_str_mv | 10.3390/pr11041234 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806581300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747470545</galeid><sourcerecordid>A747470545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-7e70b6e8aad7a67c96cbc9642fcfc81122897c3e97fc883bb7f2d2e88d4c36853</originalsourceid><addsrcrecordid>eNpNUNtKAzEQDaJgqX3xCwK-CdVcdjdZ32qpFyj2ofV5yWYnbco2WZNtwb83ZQWdgblx5sxwELql5IHzkjx2gVKSUcazCzRijIlpKai4_Fdfo0mMe5KspFzmxQiZda96wIvY24PqrXfYOqzws_WN3ULsIeCTVfjDu9Y6UAEv_dYmsMarOkI4QXjCmx34AGmmWqxcg9f2cGwHslnXBa_07gZdGdVGmPzmMfp8WWzmb9Pl6vV9PltONedZPxUgSF2AVKoRqhC6LHSdQsaMNlpSypgsheZQitRKXtfCsIaBlE2meSFzPkZ3A286-3VM_1d7fwwunayYJEUuKSckoR4G1Fa1UFlnfB-UTt7AwWrvwNg0n4ksOcmzM-39sKCDjzGAqbqQ9ArfFSXVWfvqT3v-A1LTdsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806581300</pqid></control><display><type>article</type><title>State Estimation in a Biodigester via Nonlinear Logistic Observer: Theoretical and Simulation Approach</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rodríguez-Mata, Abraham Efraím ; Gómez-Vidal, Emanuel ; Lucho-Constantino, Carlos Alexander ; Medrano-Hermosillo, Jesús A. ; Baray-Arana, Rogelio ; López-Pérez, Pablo A.</creator><creatorcontrib>Rodríguez-Mata, Abraham Efraím ; Gómez-Vidal, Emanuel ; Lucho-Constantino, Carlos Alexander ; Medrano-Hermosillo, Jesús A. ; Baray-Arana, Rogelio ; López-Pérez, Pablo A.</creatorcontrib><description>The state variables in a biodigester are predicted using an unstructured model, and this study offers an analytical design of a Non-Linear Logistic Observer (NLLO), subsequently comparing its performance to that of other prominent state estimators. Because of variables such as temperature, pH, high pressure, volumetric organic load (VOC), and hydraulic retention time (HRT), among others, biodigester samples can be affected by the use of physical sensors, which are not always practical owing to their sensitivity to the type of sampling and external disturbances. The use of virtual sensors represents one approach to solving this issue. In this work, we suggest experimentally validating a mathematical model, then analytically designing a novel NLLO observer, and finally comparing the results to those obtained using a sliding-mode estimator and a Luenberger observer. By including online CH4 and CO2 measurements as inputs to the proposed observer, the local observability analysis demonstrated that all state variables were recoverable. After showing how well the suggested observer performs in numerical experiments, a proof based on the Lyapunov theory is offered. The primary innovation of this study is the incorporation of a novel algorithm that has been empirically validated and has output resilience to input parametric perturbations.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11041234</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Advertising executives ; Algorithms ; Alternative energy sources ; Analysis ; Bacteria ; Biodegradable materials ; Biogas ; Biomass ; Biomass energy ; Carbon dioxide ; Construction ; Energy resources ; Fermentation ; Gases ; Hydraulic retention time ; Mathematical models ; Mediation ; Methane ; Microorganisms ; Observability (systems) ; Organic loading ; Perturbation ; Process controls ; Refuse as fuel ; Renewable resources ; Sensors ; State estimation ; State variable ; Variables ; Virtual sensors</subject><ispartof>Processes, 2023-04, Vol.11 (4), p.1234</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-7e70b6e8aad7a67c96cbc9642fcfc81122897c3e97fc883bb7f2d2e88d4c36853</citedby><cites>FETCH-LOGICAL-c334t-7e70b6e8aad7a67c96cbc9642fcfc81122897c3e97fc883bb7f2d2e88d4c36853</cites><orcidid>0000-0002-5152-220X ; 0000-0002-0262-420X ; 0000-0002-0899-2409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rodríguez-Mata, Abraham Efraím</creatorcontrib><creatorcontrib>Gómez-Vidal, Emanuel</creatorcontrib><creatorcontrib>Lucho-Constantino, Carlos Alexander</creatorcontrib><creatorcontrib>Medrano-Hermosillo, Jesús A.</creatorcontrib><creatorcontrib>Baray-Arana, Rogelio</creatorcontrib><creatorcontrib>López-Pérez, Pablo A.</creatorcontrib><title>State Estimation in a Biodigester via Nonlinear Logistic Observer: Theoretical and Simulation Approach</title><title>Processes</title><description>The state variables in a biodigester are predicted using an unstructured model, and this study offers an analytical design of a Non-Linear Logistic Observer (NLLO), subsequently comparing its performance to that of other prominent state estimators. Because of variables such as temperature, pH, high pressure, volumetric organic load (VOC), and hydraulic retention time (HRT), among others, biodigester samples can be affected by the use of physical sensors, which are not always practical owing to their sensitivity to the type of sampling and external disturbances. The use of virtual sensors represents one approach to solving this issue. In this work, we suggest experimentally validating a mathematical model, then analytically designing a novel NLLO observer, and finally comparing the results to those obtained using a sliding-mode estimator and a Luenberger observer. By including online CH4 and CO2 measurements as inputs to the proposed observer, the local observability analysis demonstrated that all state variables were recoverable. After showing how well the suggested observer performs in numerical experiments, a proof based on the Lyapunov theory is offered. The primary innovation of this study is the incorporation of a novel algorithm that has been empirically validated and has output resilience to input parametric perturbations.</description><subject>Advertising executives</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Biodegradable materials</subject><subject>Biogas</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>Carbon dioxide</subject><subject>Construction</subject><subject>Energy resources</subject><subject>Fermentation</subject><subject>Gases</subject><subject>Hydraulic retention time</subject><subject>Mathematical models</subject><subject>Mediation</subject><subject>Methane</subject><subject>Microorganisms</subject><subject>Observability (systems)</subject><subject>Organic loading</subject><subject>Perturbation</subject><subject>Process controls</subject><subject>Refuse as fuel</subject><subject>Renewable resources</subject><subject>Sensors</subject><subject>State estimation</subject><subject>State variable</subject><subject>Variables</subject><subject>Virtual sensors</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUNtKAzEQDaJgqX3xCwK-CdVcdjdZ32qpFyj2ofV5yWYnbco2WZNtwb83ZQWdgblx5sxwELql5IHzkjx2gVKSUcazCzRijIlpKai4_Fdfo0mMe5KspFzmxQiZda96wIvY24PqrXfYOqzws_WN3ULsIeCTVfjDu9Y6UAEv_dYmsMarOkI4QXjCmx34AGmmWqxcg9f2cGwHslnXBa_07gZdGdVGmPzmMfp8WWzmb9Pl6vV9PltONedZPxUgSF2AVKoRqhC6LHSdQsaMNlpSypgsheZQitRKXtfCsIaBlE2meSFzPkZ3A286-3VM_1d7fwwunayYJEUuKSckoR4G1Fa1UFlnfB-UTt7AwWrvwNg0n4ksOcmzM-39sKCDjzGAqbqQ9ArfFSXVWfvqT3v-A1LTdsc</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Rodríguez-Mata, Abraham Efraím</creator><creator>Gómez-Vidal, Emanuel</creator><creator>Lucho-Constantino, Carlos Alexander</creator><creator>Medrano-Hermosillo, Jesús A.</creator><creator>Baray-Arana, Rogelio</creator><creator>López-Pérez, Pablo A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5152-220X</orcidid><orcidid>https://orcid.org/0000-0002-0262-420X</orcidid><orcidid>https://orcid.org/0000-0002-0899-2409</orcidid></search><sort><creationdate>20230401</creationdate><title>State Estimation in a Biodigester via Nonlinear Logistic Observer: Theoretical and Simulation Approach</title><author>Rodríguez-Mata, Abraham Efraím ; Gómez-Vidal, Emanuel ; Lucho-Constantino, Carlos Alexander ; Medrano-Hermosillo, Jesús A. ; Baray-Arana, Rogelio ; López-Pérez, Pablo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-7e70b6e8aad7a67c96cbc9642fcfc81122897c3e97fc883bb7f2d2e88d4c36853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advertising executives</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Biodegradable materials</topic><topic>Biogas</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>Carbon dioxide</topic><topic>Construction</topic><topic>Energy resources</topic><topic>Fermentation</topic><topic>Gases</topic><topic>Hydraulic retention time</topic><topic>Mathematical models</topic><topic>Mediation</topic><topic>Methane</topic><topic>Microorganisms</topic><topic>Observability (systems)</topic><topic>Organic loading</topic><topic>Perturbation</topic><topic>Process controls</topic><topic>Refuse as fuel</topic><topic>Renewable resources</topic><topic>Sensors</topic><topic>State estimation</topic><topic>State variable</topic><topic>Variables</topic><topic>Virtual sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Mata, Abraham Efraím</creatorcontrib><creatorcontrib>Gómez-Vidal, Emanuel</creatorcontrib><creatorcontrib>Lucho-Constantino, Carlos Alexander</creatorcontrib><creatorcontrib>Medrano-Hermosillo, Jesús A.</creatorcontrib><creatorcontrib>Baray-Arana, Rogelio</creatorcontrib><creatorcontrib>López-Pérez, Pablo A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Mata, Abraham Efraím</au><au>Gómez-Vidal, Emanuel</au><au>Lucho-Constantino, Carlos Alexander</au><au>Medrano-Hermosillo, Jesús A.</au><au>Baray-Arana, Rogelio</au><au>López-Pérez, Pablo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State Estimation in a Biodigester via Nonlinear Logistic Observer: Theoretical and Simulation Approach</atitle><jtitle>Processes</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>11</volume><issue>4</issue><spage>1234</spage><pages>1234-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>The state variables in a biodigester are predicted using an unstructured model, and this study offers an analytical design of a Non-Linear Logistic Observer (NLLO), subsequently comparing its performance to that of other prominent state estimators. Because of variables such as temperature, pH, high pressure, volumetric organic load (VOC), and hydraulic retention time (HRT), among others, biodigester samples can be affected by the use of physical sensors, which are not always practical owing to their sensitivity to the type of sampling and external disturbances. The use of virtual sensors represents one approach to solving this issue. In this work, we suggest experimentally validating a mathematical model, then analytically designing a novel NLLO observer, and finally comparing the results to those obtained using a sliding-mode estimator and a Luenberger observer. By including online CH4 and CO2 measurements as inputs to the proposed observer, the local observability analysis demonstrated that all state variables were recoverable. After showing how well the suggested observer performs in numerical experiments, a proof based on the Lyapunov theory is offered. The primary innovation of this study is the incorporation of a novel algorithm that has been empirically validated and has output resilience to input parametric perturbations.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11041234</doi><orcidid>https://orcid.org/0000-0002-5152-220X</orcidid><orcidid>https://orcid.org/0000-0002-0262-420X</orcidid><orcidid>https://orcid.org/0000-0002-0899-2409</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-04, Vol.11 (4), p.1234 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2806581300 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Advertising executives Algorithms Alternative energy sources Analysis Bacteria Biodegradable materials Biogas Biomass Biomass energy Carbon dioxide Construction Energy resources Fermentation Gases Hydraulic retention time Mathematical models Mediation Methane Microorganisms Observability (systems) Organic loading Perturbation Process controls Refuse as fuel Renewable resources Sensors State estimation State variable Variables Virtual sensors |
title | State Estimation in a Biodigester via Nonlinear Logistic Observer: Theoretical and Simulation Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State%20Estimation%20in%20a%20Biodigester%20via%20Nonlinear%20Logistic%20Observer:%20Theoretical%20and%20Simulation%20Approach&rft.jtitle=Processes&rft.au=Rodr%C3%ADguez-Mata,%20Abraham%20Efra%C3%ADm&rft.date=2023-04-01&rft.volume=11&rft.issue=4&rft.spage=1234&rft.pages=1234-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11041234&rft_dat=%3Cgale_proqu%3EA747470545%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806581300&rft_id=info:pmid/&rft_galeid=A747470545&rfr_iscdi=true |