A CANCELLATION PROPERTY OF THE MOORE–PENROSE INVERSE OF TRIPLE PRODUCTS
We study the matrix equation C(BXC)†B=X†, where X† denotes the Moore–Penrose inverse. We derive conditions for the consistency of the equation and express all its solutions using singular vectors of B and C. Applications to compliance matrices in molecular dynamics, to mixed reverse-order laws of ge...
Gespeichert in:
Veröffentlicht in: | Journal of the Australian Mathematical Society (2001) 2009-02, Vol.86 (1), p.33-44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | Journal of the Australian Mathematical Society (2001) |
container_volume | 86 |
creator | DAMM, TOBIAS WIMMER, HARALD K. |
description | We study the matrix equation C(BXC)†B=X†, where X† denotes the Moore–Penrose inverse. We derive conditions for the consistency of the equation and express all its solutions using singular vectors of B and C. Applications to compliance matrices in molecular dynamics, to mixed reverse-order laws of generalized inverses and to weighted Moore–Penrose inverses are given. |
doi_str_mv | 10.1017/S144678870800044X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2806558485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S144678870800044X</cupid><sourcerecordid>2806558485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-89d076531a8016206295bd4a7fc8bd7e75b16b9045cde2556aa96d245d74de013</originalsourceid><addsrcrecordid>eNp1UE1Lw0AUXETBWv0B3gKeo2-T_cqxxLUNxCSmadHTkmS30mpt3bSgN_-D_9BfYkKLHsTTPN7MvHkMQucYLjFgfjXGhDAuBAcBAITcH6Bet3IFBn64nzv-GJ00zQLAw4RBD0UDJxwkoYzjQRGliZPlaSbz4sFJb5xiJJ3bNM3l18dnJpM8HUsnSqYyb7Gj8yiLZee4noTF-BQdzcrnxpztsY8mN7IIR26cDqNwELu1H4iNKwINnFEflwIw84B5Aa00KfmsFpXmhtMKsyoAQmttPEpZWQZMe4RqTrQB7PfRxe7u2q5et6bZqMVqa1_aSOUJYJQKImirwjtVbVdNY81Mre18Wdp3hUF1jak_jbUed-eZNxvz9mMo7ZNi3OdUseGdyrPQm4II1LTV-_uMclnZuX40v6_8n_INfep1iA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806558485</pqid></control><display><type>article</type><title>A CANCELLATION PROPERTY OF THE MOORE–PENROSE INVERSE OF TRIPLE PRODUCTS</title><source>Cambridge University Press Journals Complete</source><creator>DAMM, TOBIAS ; WIMMER, HARALD K.</creator><creatorcontrib>DAMM, TOBIAS ; WIMMER, HARALD K.</creatorcontrib><description>We study the matrix equation C(BXC)†B=X†, where X† denotes the Moore–Penrose inverse. We derive conditions for the consistency of the equation and express all its solutions using singular vectors of B and C. Applications to compliance matrices in molecular dynamics, to mixed reverse-order laws of generalized inverses and to weighted Moore–Penrose inverses are given.</description><identifier>ISSN: 1446-7887</identifier><identifier>EISSN: 1446-8107</identifier><identifier>DOI: 10.1017/S144678870800044X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>15A90 ; compliance matrix ; Mathematical analysis ; matrix equations ; Molecular dynamics ; Moore–Penrose generalized inverse ; primary 15A09 ; reverse-order property ; secondary 15A24 ; Wedderburn–Guttman theorem ; weighted generalized inverse</subject><ispartof>Journal of the Australian Mathematical Society (2001), 2009-02, Vol.86 (1), p.33-44</ispartof><rights>Copyright © Australian Mathematical Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-89d076531a8016206295bd4a7fc8bd7e75b16b9045cde2556aa96d245d74de013</citedby><cites>FETCH-LOGICAL-c398t-89d076531a8016206295bd4a7fc8bd7e75b16b9045cde2556aa96d245d74de013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S144678870800044X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>DAMM, TOBIAS</creatorcontrib><creatorcontrib>WIMMER, HARALD K.</creatorcontrib><title>A CANCELLATION PROPERTY OF THE MOORE–PENROSE INVERSE OF TRIPLE PRODUCTS</title><title>Journal of the Australian Mathematical Society (2001)</title><addtitle>J. Aust. Math. Soc</addtitle><description>We study the matrix equation C(BXC)†B=X†, where X† denotes the Moore–Penrose inverse. We derive conditions for the consistency of the equation and express all its solutions using singular vectors of B and C. Applications to compliance matrices in molecular dynamics, to mixed reverse-order laws of generalized inverses and to weighted Moore–Penrose inverses are given.</description><subject>15A90</subject><subject>compliance matrix</subject><subject>Mathematical analysis</subject><subject>matrix equations</subject><subject>Molecular dynamics</subject><subject>Moore–Penrose generalized inverse</subject><subject>primary 15A09</subject><subject>reverse-order property</subject><subject>secondary 15A24</subject><subject>Wedderburn–Guttman theorem</subject><subject>weighted generalized inverse</subject><issn>1446-7887</issn><issn>1446-8107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UE1Lw0AUXETBWv0B3gKeo2-T_cqxxLUNxCSmadHTkmS30mpt3bSgN_-D_9BfYkKLHsTTPN7MvHkMQucYLjFgfjXGhDAuBAcBAITcH6Bet3IFBn64nzv-GJ00zQLAw4RBD0UDJxwkoYzjQRGliZPlaSbz4sFJb5xiJJ3bNM3l18dnJpM8HUsnSqYyb7Gj8yiLZee4noTF-BQdzcrnxpztsY8mN7IIR26cDqNwELu1H4iNKwINnFEflwIw84B5Aa00KfmsFpXmhtMKsyoAQmttPEpZWQZMe4RqTrQB7PfRxe7u2q5et6bZqMVqa1_aSOUJYJQKImirwjtVbVdNY81Mre18Wdp3hUF1jak_jbUed-eZNxvz9mMo7ZNi3OdUseGdyrPQm4II1LTV-_uMclnZuX40v6_8n_INfep1iA</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>DAMM, TOBIAS</creator><creator>WIMMER, HARALD K.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090201</creationdate><title>A CANCELLATION PROPERTY OF THE MOORE–PENROSE INVERSE OF TRIPLE PRODUCTS</title><author>DAMM, TOBIAS ; WIMMER, HARALD K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-89d076531a8016206295bd4a7fc8bd7e75b16b9045cde2556aa96d245d74de013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>15A90</topic><topic>compliance matrix</topic><topic>Mathematical analysis</topic><topic>matrix equations</topic><topic>Molecular dynamics</topic><topic>Moore–Penrose generalized inverse</topic><topic>primary 15A09</topic><topic>reverse-order property</topic><topic>secondary 15A24</topic><topic>Wedderburn–Guttman theorem</topic><topic>weighted generalized inverse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DAMM, TOBIAS</creatorcontrib><creatorcontrib>WIMMER, HARALD K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DAMM, TOBIAS</au><au>WIMMER, HARALD K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A CANCELLATION PROPERTY OF THE MOORE–PENROSE INVERSE OF TRIPLE PRODUCTS</atitle><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle><addtitle>J. Aust. Math. Soc</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>86</volume><issue>1</issue><spage>33</spage><epage>44</epage><pages>33-44</pages><issn>1446-7887</issn><eissn>1446-8107</eissn><abstract>We study the matrix equation C(BXC)†B=X†, where X† denotes the Moore–Penrose inverse. We derive conditions for the consistency of the equation and express all its solutions using singular vectors of B and C. Applications to compliance matrices in molecular dynamics, to mixed reverse-order laws of generalized inverses and to weighted Moore–Penrose inverses are given.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S144678870800044X</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1446-7887 |
ispartof | Journal of the Australian Mathematical Society (2001), 2009-02, Vol.86 (1), p.33-44 |
issn | 1446-7887 1446-8107 |
language | eng |
recordid | cdi_proquest_journals_2806558485 |
source | Cambridge University Press Journals Complete |
subjects | 15A90 compliance matrix Mathematical analysis matrix equations Molecular dynamics Moore–Penrose generalized inverse primary 15A09 reverse-order property secondary 15A24 Wedderburn–Guttman theorem weighted generalized inverse |
title | A CANCELLATION PROPERTY OF THE MOORE–PENROSE INVERSE OF TRIPLE PRODUCTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20CANCELLATION%20PROPERTY%20OF%20THE%20MOORE%E2%80%93PENROSE%20INVERSE%20OF%20TRIPLE%20PRODUCTS&rft.jtitle=Journal%20of%20the%20Australian%20Mathematical%20Society%20(2001)&rft.au=DAMM,%20TOBIAS&rft.date=2009-02-01&rft.volume=86&rft.issue=1&rft.spage=33&rft.epage=44&rft.pages=33-44&rft.issn=1446-7887&rft.eissn=1446-8107&rft_id=info:doi/10.1017/S144678870800044X&rft_dat=%3Cproquest_cross%3E2806558485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806558485&rft_id=info:pmid/&rft_cupid=10_1017_S144678870800044X&rfr_iscdi=true |