A Causal Graph-Based Approach for APT Predictive Analytics

In recent years, complex multi-stage cyberattacks have become more common, for which audit log data are a good source of information for online monitoring. However, predicting cyber threat events based on audit logs remains an open research problem. This paper explores advanced persistent threat (AP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-04, Vol.12 (8), p.1849
Hauptverfasser: Liu, Haitian, Jiang, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1849
container_title Electronics (Basel)
container_volume 12
creator Liu, Haitian
Jiang, Rong
description In recent years, complex multi-stage cyberattacks have become more common, for which audit log data are a good source of information for online monitoring. However, predicting cyber threat events based on audit logs remains an open research problem. This paper explores advanced persistent threat (APT) audit log information and uses a combination of causal graphs and deep learning techniques to perform predictive analysis of APT. The study focuses on two different methods of constructing malicious activity scenarios, including those based on malicious entity evolving graphs and malicious entity neighborhood graphs. Deep learning networks are then utilized to learn from past malicious activity scenarios and predict specific malicious attack events. To validate the effectiveness of this approach, audit log data published by DARPA’s Transparent Computing Program and restored by ATLAS are used to demonstrate the confidence of the prediction results and recommend the most effective malicious event prediction by Top-N.
doi_str_mv 10.3390/electronics12081849
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806536986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747443737</galeid><sourcerecordid>A747443737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-517c550f99f4000bafdf30ea9a4105ce450ae9d5168887491af1ef23ce71700e3</originalsourceid><addsrcrecordid>eNptULFOwzAQtRBIVKVfwGKJOcWO7dhmCxUUpEp0KHN0OGeaKk2CnSL173FVBgbuDXc6vbv39Ai55WwuhGX32KIbQ981LvKcGW6kvSCTnGmb2dzml3_mazKLccdSWS6MYBPyUNIFHCK0dBlg2GaPELGm5TCEHtyW-j7Qcr2h64B148bmG2nZQXsck9gNufLQRpz99il5f37aLF6y1dvydVGuMicKPmaKa6cU89Z6mYQ_wNdeMAQLkjPlUCoGaGvFC2OMlpaD5-hz4VBzzRiKKbk7_02evg4Yx2rXH0JyEavcsEKJwpoiseZn1ie0WDWd78cALqHGfeP6Dn2T9qWWWkqhE6ZEnA9c6GMM6KshNHsIx4qz6hRs9U-w4gdzp2w1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806536986</pqid></control><display><type>article</type><title>A Causal Graph-Based Approach for APT Predictive Analytics</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Liu, Haitian ; Jiang, Rong</creator><creatorcontrib>Liu, Haitian ; Jiang, Rong</creatorcontrib><description>In recent years, complex multi-stage cyberattacks have become more common, for which audit log data are a good source of information for online monitoring. However, predicting cyber threat events based on audit logs remains an open research problem. This paper explores advanced persistent threat (APT) audit log information and uses a combination of causal graphs and deep learning techniques to perform predictive analysis of APT. The study focuses on two different methods of constructing malicious activity scenarios, including those based on malicious entity evolving graphs and malicious entity neighborhood graphs. Deep learning networks are then utilized to learn from past malicious activity scenarios and predict specific malicious attack events. To validate the effectiveness of this approach, audit log data published by DARPA’s Transparent Computing Program and restored by ATLAS are used to demonstrate the confidence of the prediction results and recommend the most effective malicious event prediction by Top-N.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12081849</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Audits ; Computer crimes ; Cybersecurity ; Data security ; Deep learning ; Graphs ; Machine learning ; Natural language ; Performance prediction ; Predictive analytics ; Semantics ; Threats</subject><ispartof>Electronics (Basel), 2023-04, Vol.12 (8), p.1849</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-517c550f99f4000bafdf30ea9a4105ce450ae9d5168887491af1ef23ce71700e3</citedby><cites>FETCH-LOGICAL-c361t-517c550f99f4000bafdf30ea9a4105ce450ae9d5168887491af1ef23ce71700e3</cites><orcidid>0009-0001-5425-7851 ; 0000-0003-4160-8349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Liu, Haitian</creatorcontrib><creatorcontrib>Jiang, Rong</creatorcontrib><title>A Causal Graph-Based Approach for APT Predictive Analytics</title><title>Electronics (Basel)</title><description>In recent years, complex multi-stage cyberattacks have become more common, for which audit log data are a good source of information for online monitoring. However, predicting cyber threat events based on audit logs remains an open research problem. This paper explores advanced persistent threat (APT) audit log information and uses a combination of causal graphs and deep learning techniques to perform predictive analysis of APT. The study focuses on two different methods of constructing malicious activity scenarios, including those based on malicious entity evolving graphs and malicious entity neighborhood graphs. Deep learning networks are then utilized to learn from past malicious activity scenarios and predict specific malicious attack events. To validate the effectiveness of this approach, audit log data published by DARPA’s Transparent Computing Program and restored by ATLAS are used to demonstrate the confidence of the prediction results and recommend the most effective malicious event prediction by Top-N.</description><subject>Analysis</subject><subject>Audits</subject><subject>Computer crimes</subject><subject>Cybersecurity</subject><subject>Data security</subject><subject>Deep learning</subject><subject>Graphs</subject><subject>Machine learning</subject><subject>Natural language</subject><subject>Performance prediction</subject><subject>Predictive analytics</subject><subject>Semantics</subject><subject>Threats</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptULFOwzAQtRBIVKVfwGKJOcWO7dhmCxUUpEp0KHN0OGeaKk2CnSL173FVBgbuDXc6vbv39Ai55WwuhGX32KIbQ981LvKcGW6kvSCTnGmb2dzml3_mazKLccdSWS6MYBPyUNIFHCK0dBlg2GaPELGm5TCEHtyW-j7Qcr2h64B148bmG2nZQXsck9gNufLQRpz99il5f37aLF6y1dvydVGuMicKPmaKa6cU89Z6mYQ_wNdeMAQLkjPlUCoGaGvFC2OMlpaD5-hz4VBzzRiKKbk7_02evg4Yx2rXH0JyEavcsEKJwpoiseZn1ie0WDWd78cALqHGfeP6Dn2T9qWWWkqhE6ZEnA9c6GMM6KshNHsIx4qz6hRs9U-w4gdzp2w1</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Liu, Haitian</creator><creator>Jiang, Rong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0001-5425-7851</orcidid><orcidid>https://orcid.org/0000-0003-4160-8349</orcidid></search><sort><creationdate>20230401</creationdate><title>A Causal Graph-Based Approach for APT Predictive Analytics</title><author>Liu, Haitian ; Jiang, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-517c550f99f4000bafdf30ea9a4105ce450ae9d5168887491af1ef23ce71700e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Audits</topic><topic>Computer crimes</topic><topic>Cybersecurity</topic><topic>Data security</topic><topic>Deep learning</topic><topic>Graphs</topic><topic>Machine learning</topic><topic>Natural language</topic><topic>Performance prediction</topic><topic>Predictive analytics</topic><topic>Semantics</topic><topic>Threats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haitian</creatorcontrib><creatorcontrib>Jiang, Rong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haitian</au><au>Jiang, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Causal Graph-Based Approach for APT Predictive Analytics</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>12</volume><issue>8</issue><spage>1849</spage><pages>1849-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In recent years, complex multi-stage cyberattacks have become more common, for which audit log data are a good source of information for online monitoring. However, predicting cyber threat events based on audit logs remains an open research problem. This paper explores advanced persistent threat (APT) audit log information and uses a combination of causal graphs and deep learning techniques to perform predictive analysis of APT. The study focuses on two different methods of constructing malicious activity scenarios, including those based on malicious entity evolving graphs and malicious entity neighborhood graphs. Deep learning networks are then utilized to learn from past malicious activity scenarios and predict specific malicious attack events. To validate the effectiveness of this approach, audit log data published by DARPA’s Transparent Computing Program and restored by ATLAS are used to demonstrate the confidence of the prediction results and recommend the most effective malicious event prediction by Top-N.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12081849</doi><orcidid>https://orcid.org/0009-0001-5425-7851</orcidid><orcidid>https://orcid.org/0000-0003-4160-8349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-04, Vol.12 (8), p.1849
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2806536986
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Analysis
Audits
Computer crimes
Cybersecurity
Data security
Deep learning
Graphs
Machine learning
Natural language
Performance prediction
Predictive analytics
Semantics
Threats
title A Causal Graph-Based Approach for APT Predictive Analytics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Causal%20Graph-Based%20Approach%20for%20APT%20Predictive%20Analytics&rft.jtitle=Electronics%20(Basel)&rft.au=Liu,%20Haitian&rft.date=2023-04-01&rft.volume=12&rft.issue=8&rft.spage=1849&rft.pages=1849-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12081849&rft_dat=%3Cgale_proqu%3EA747443737%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806536986&rft_id=info:pmid/&rft_galeid=A747443737&rfr_iscdi=true