Thermoelectric and structural properties of sputtered AZO thin films with varying al doping ratios
Nanomaterials can be game-changers in the arena of sustainable energy production because they may enable highly efficient thermoelectric energy conversion and harvesting. For this purpose, doped thin film oxides have been proven to be promising systems for achieving high thermoelectric performances....
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2023-04, Vol.13 (4), p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Coatings (Basel) |
container_volume | 13 |
creator | Isram, Muhammad Maffei, Riccardo Magrin Demontis, Valeria Martini, Leonardo Forti, Stiven Coletti, Camilla Bellani, Vittorio Mescola, Andrea Paolicelli, Guido Rota, Alberto Benedetti, Stefania Bona, Alessandro di Ribeiro, Joana Margarida Fernandes Silva Tavares, C. J. Rossella, Francesco |
description | Nanomaterials can be game-changers in the arena of sustainable energy production because they may enable highly efficient thermoelectric energy conversion and harvesting. For this purpose, doped thin film oxides have been proven to be promising systems for achieving high thermoelectric performances. In this work, the design, realization, and experimental investigation of the thermo electric properties exhibited by a set of five Al:ZnO thin films with thicknesses of 300 nm and Al doping levels ranging from 2 to 8 at.% are described. Using a multi-technique approach, the main structural and morphological features of the grown thin films are addressed, as well as the electrical and thermoelectrical transport properties. The results show that the samples exhibited a Seebeck coefficient absolute value in the range of 22–33 µV/K, assuming their maximum doping level was 8 at.%, while the samples’ resistivity was decreased below 2 × 10−3 Ohm·cm with a doping level of 3 at.%. The findings shine light on the perspectives of the applications of the metal ZnO thin film technology for thermoelectrics.
This research was funded by MIUR-PON, scholarship PhD program “Physics and nano sciences”021/22.“Nanotecnologie per la termoelettricità e l’energy harvesting” (Azione IV.5 “Dottorati su tematiche green”) and by project QUANTEP, INFN CSN5. VB was supported by the project “Brosynano”MICINN-FEDER (PID2019-106820RB-C22). C.T. acknowledges the funding from FCT/PIDDAC through the Strategic Funds project reference UIDB/04650/2020-2023. A.M., G.P. acknowledge support by the Italian Ministry of University and Research through PRIN UTFROM N. 20178PZCB5. This work was also partially funded under the National Recovery and Resilience Plan (NRRP), Mission 04 Component 2 Investment 1.5 – NextGenerationEU, Call for tender n. 3277 dated 30/12/2021. Award Number: 0001052 dated 23/06/2022. |
doi_str_mv | 10.3390/coatings13040691 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806517394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747442841</galeid><sourcerecordid>A747442841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-8fb8d974c976672ed2ba9626a5d39da4c85964aeefd1e26e73408c266f7e81213</originalsourceid><addsrcrecordid>eNpdULtOAzEQPCGQiICe0hJ1gl_nRxlFvCSkNNDQWI69R4wu58P2BfH3OAoFYrfYKWZ2Z7ZprgleMKbxrYu2hOE9E4Y5FpqcNDOKpZ4LTujpH3zeXOX8gWtpwhTRs2bzsoW0i9CDKyk4ZAePckmTK1OyPRpTHCGVABnFDuVxKgUSeLR8W6OyDQPqQr_L6CuULdrb9F1NoCrzcTygVF3FfNmcdbbPcPU7L5rX-7uX1eP8ef3wtFo-zx2TssxVt1FeS-60FEJS8HRjtaDCtp5pb7lTrRbcAnSeABUgGcfKUSE6CYpQwi6am-PeavpzglzMR5zSUE8aqrBoiWSaV9biyHq3PZgwdLEk62p72AUXB6iJwCwll5xTxQ9r8VHgUsw5QWfGFHY1qyHYHL5v_n-_StBRkpy1o0mwD7nYbIii1Ki2pZL9AA_OhPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806517394</pqid></control><display><type>article</type><title>Thermoelectric and structural properties of sputtered AZO thin films with varying al doping ratios</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Isram, Muhammad ; Maffei, Riccardo Magrin ; Demontis, Valeria ; Martini, Leonardo ; Forti, Stiven ; Coletti, Camilla ; Bellani, Vittorio ; Mescola, Andrea ; Paolicelli, Guido ; Rota, Alberto ; Benedetti, Stefania ; Bona, Alessandro di ; Ribeiro, Joana Margarida Fernandes Silva ; Tavares, C. J. ; Rossella, Francesco</creator><creatorcontrib>Isram, Muhammad ; Maffei, Riccardo Magrin ; Demontis, Valeria ; Martini, Leonardo ; Forti, Stiven ; Coletti, Camilla ; Bellani, Vittorio ; Mescola, Andrea ; Paolicelli, Guido ; Rota, Alberto ; Benedetti, Stefania ; Bona, Alessandro di ; Ribeiro, Joana Margarida Fernandes Silva ; Tavares, C. J. ; Rossella, Francesco</creatorcontrib><description>Nanomaterials can be game-changers in the arena of sustainable energy production because they may enable highly efficient thermoelectric energy conversion and harvesting. For this purpose, doped thin film oxides have been proven to be promising systems for achieving high thermoelectric performances. In this work, the design, realization, and experimental investigation of the thermo electric properties exhibited by a set of five Al:ZnO thin films with thicknesses of 300 nm and Al doping levels ranging from 2 to 8 at.% are described. Using a multi-technique approach, the main structural and morphological features of the grown thin films are addressed, as well as the electrical and thermoelectrical transport properties. The results show that the samples exhibited a Seebeck coefficient absolute value in the range of 22–33 µV/K, assuming their maximum doping level was 8 at.%, while the samples’ resistivity was decreased below 2 × 10−3 Ohm·cm with a doping level of 3 at.%. The findings shine light on the perspectives of the applications of the metal ZnO thin film technology for thermoelectrics.
This research was funded by MIUR-PON, scholarship PhD program “Physics and nano sciences”021/22.“Nanotecnologie per la termoelettricità e l’energy harvesting” (Azione IV.5 “Dottorati su tematiche green”) and by project QUANTEP, INFN CSN5. VB was supported by the project “Brosynano”MICINN-FEDER (PID2019-106820RB-C22). C.T. acknowledges the funding from FCT/PIDDAC through the Strategic Funds project reference UIDB/04650/2020-2023. A.M., G.P. acknowledge support by the Italian Ministry of University and Research through PRIN UTFROM N. 20178PZCB5. This work was also partially funded under the National Recovery and Resilience Plan (NRRP), Mission 04 Component 2 Investment 1.5 – NextGenerationEU, Call for tender n. 3277 dated 30/12/2021. Award Number: 0001052 dated 23/06/2022.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings13040691</identifier><language>eng</language><publisher>Basel: Multidisciplinary Digital Publishing Institute</publisher><subject>Composite materials ; Conductivity ; Dielectric films ; Doping ; Electronic transport ; Energy conversion ; Energy harvesting ; Glass substrates ; Investigations ; Lasers ; Morphology ; Nanomaterials ; Nanoscale thermoelectricity ; Optics ; Science & Technology ; Seebeck coefficient ; Seebeck effect ; Software ; Spectrum analysis ; Thermoelectric energy conversion ; Thermoelectricity ; Thickness ; Thin films ; Transport properties ; Zinc oxide ; ZnO</subject><ispartof>Coatings (Basel), 2023-04, Vol.13 (4), p.1-12</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-8fb8d974c976672ed2ba9626a5d39da4c85964aeefd1e26e73408c266f7e81213</citedby><cites>FETCH-LOGICAL-c377t-8fb8d974c976672ed2ba9626a5d39da4c85964aeefd1e26e73408c266f7e81213</cites><orcidid>0000-0001-6801-1564 ; 0000-0003-2914-1459 ; 0000-0002-9431-2309 ; 0000-0002-1667-7564 ; 0000-0002-2683-4818 ; 0000-0001-5757-0096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Isram, Muhammad</creatorcontrib><creatorcontrib>Maffei, Riccardo Magrin</creatorcontrib><creatorcontrib>Demontis, Valeria</creatorcontrib><creatorcontrib>Martini, Leonardo</creatorcontrib><creatorcontrib>Forti, Stiven</creatorcontrib><creatorcontrib>Coletti, Camilla</creatorcontrib><creatorcontrib>Bellani, Vittorio</creatorcontrib><creatorcontrib>Mescola, Andrea</creatorcontrib><creatorcontrib>Paolicelli, Guido</creatorcontrib><creatorcontrib>Rota, Alberto</creatorcontrib><creatorcontrib>Benedetti, Stefania</creatorcontrib><creatorcontrib>Bona, Alessandro di</creatorcontrib><creatorcontrib>Ribeiro, Joana Margarida Fernandes Silva</creatorcontrib><creatorcontrib>Tavares, C. J.</creatorcontrib><creatorcontrib>Rossella, Francesco</creatorcontrib><title>Thermoelectric and structural properties of sputtered AZO thin films with varying al doping ratios</title><title>Coatings (Basel)</title><description>Nanomaterials can be game-changers in the arena of sustainable energy production because they may enable highly efficient thermoelectric energy conversion and harvesting. For this purpose, doped thin film oxides have been proven to be promising systems for achieving high thermoelectric performances. In this work, the design, realization, and experimental investigation of the thermo electric properties exhibited by a set of five Al:ZnO thin films with thicknesses of 300 nm and Al doping levels ranging from 2 to 8 at.% are described. Using a multi-technique approach, the main structural and morphological features of the grown thin films are addressed, as well as the electrical and thermoelectrical transport properties. The results show that the samples exhibited a Seebeck coefficient absolute value in the range of 22–33 µV/K, assuming their maximum doping level was 8 at.%, while the samples’ resistivity was decreased below 2 × 10−3 Ohm·cm with a doping level of 3 at.%. The findings shine light on the perspectives of the applications of the metal ZnO thin film technology for thermoelectrics.
This research was funded by MIUR-PON, scholarship PhD program “Physics and nano sciences”021/22.“Nanotecnologie per la termoelettricità e l’energy harvesting” (Azione IV.5 “Dottorati su tematiche green”) and by project QUANTEP, INFN CSN5. VB was supported by the project “Brosynano”MICINN-FEDER (PID2019-106820RB-C22). C.T. acknowledges the funding from FCT/PIDDAC through the Strategic Funds project reference UIDB/04650/2020-2023. A.M., G.P. acknowledge support by the Italian Ministry of University and Research through PRIN UTFROM N. 20178PZCB5. This work was also partially funded under the National Recovery and Resilience Plan (NRRP), Mission 04 Component 2 Investment 1.5 – NextGenerationEU, Call for tender n. 3277 dated 30/12/2021. Award Number: 0001052 dated 23/06/2022.</description><subject>Composite materials</subject><subject>Conductivity</subject><subject>Dielectric films</subject><subject>Doping</subject><subject>Electronic transport</subject><subject>Energy conversion</subject><subject>Energy harvesting</subject><subject>Glass substrates</subject><subject>Investigations</subject><subject>Lasers</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoscale thermoelectricity</subject><subject>Optics</subject><subject>Science & Technology</subject><subject>Seebeck coefficient</subject><subject>Seebeck effect</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>Thermoelectric energy conversion</subject><subject>Thermoelectricity</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Transport properties</subject><subject>Zinc oxide</subject><subject>ZnO</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdULtOAzEQPCGQiICe0hJ1gl_nRxlFvCSkNNDQWI69R4wu58P2BfH3OAoFYrfYKWZ2Z7ZprgleMKbxrYu2hOE9E4Y5FpqcNDOKpZ4LTujpH3zeXOX8gWtpwhTRs2bzsoW0i9CDKyk4ZAePckmTK1OyPRpTHCGVABnFDuVxKgUSeLR8W6OyDQPqQr_L6CuULdrb9F1NoCrzcTygVF3FfNmcdbbPcPU7L5rX-7uX1eP8ef3wtFo-zx2TssxVt1FeS-60FEJS8HRjtaDCtp5pb7lTrRbcAnSeABUgGcfKUSE6CYpQwi6am-PeavpzglzMR5zSUE8aqrBoiWSaV9biyHq3PZgwdLEk62p72AUXB6iJwCwll5xTxQ9r8VHgUsw5QWfGFHY1qyHYHL5v_n-_StBRkpy1o0mwD7nYbIii1Ki2pZL9AA_OhPI</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Isram, Muhammad</creator><creator>Maffei, Riccardo Magrin</creator><creator>Demontis, Valeria</creator><creator>Martini, Leonardo</creator><creator>Forti, Stiven</creator><creator>Coletti, Camilla</creator><creator>Bellani, Vittorio</creator><creator>Mescola, Andrea</creator><creator>Paolicelli, Guido</creator><creator>Rota, Alberto</creator><creator>Benedetti, Stefania</creator><creator>Bona, Alessandro di</creator><creator>Ribeiro, Joana Margarida Fernandes Silva</creator><creator>Tavares, C. J.</creator><creator>Rossella, Francesco</creator><general>Multidisciplinary Digital Publishing Institute</general><general>MDPI AG</general><scope>RCLKO</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6801-1564</orcidid><orcidid>https://orcid.org/0000-0003-2914-1459</orcidid><orcidid>https://orcid.org/0000-0002-9431-2309</orcidid><orcidid>https://orcid.org/0000-0002-1667-7564</orcidid><orcidid>https://orcid.org/0000-0002-2683-4818</orcidid><orcidid>https://orcid.org/0000-0001-5757-0096</orcidid></search><sort><creationdate>20230401</creationdate><title>Thermoelectric and structural properties of sputtered AZO thin films with varying al doping ratios</title><author>Isram, Muhammad ; Maffei, Riccardo Magrin ; Demontis, Valeria ; Martini, Leonardo ; Forti, Stiven ; Coletti, Camilla ; Bellani, Vittorio ; Mescola, Andrea ; Paolicelli, Guido ; Rota, Alberto ; Benedetti, Stefania ; Bona, Alessandro di ; Ribeiro, Joana Margarida Fernandes Silva ; Tavares, C. J. ; Rossella, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-8fb8d974c976672ed2ba9626a5d39da4c85964aeefd1e26e73408c266f7e81213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composite materials</topic><topic>Conductivity</topic><topic>Dielectric films</topic><topic>Doping</topic><topic>Electronic transport</topic><topic>Energy conversion</topic><topic>Energy harvesting</topic><topic>Glass substrates</topic><topic>Investigations</topic><topic>Lasers</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoscale thermoelectricity</topic><topic>Optics</topic><topic>Science & Technology</topic><topic>Seebeck coefficient</topic><topic>Seebeck effect</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>Thermoelectric energy conversion</topic><topic>Thermoelectricity</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Transport properties</topic><topic>Zinc oxide</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isram, Muhammad</creatorcontrib><creatorcontrib>Maffei, Riccardo Magrin</creatorcontrib><creatorcontrib>Demontis, Valeria</creatorcontrib><creatorcontrib>Martini, Leonardo</creatorcontrib><creatorcontrib>Forti, Stiven</creatorcontrib><creatorcontrib>Coletti, Camilla</creatorcontrib><creatorcontrib>Bellani, Vittorio</creatorcontrib><creatorcontrib>Mescola, Andrea</creatorcontrib><creatorcontrib>Paolicelli, Guido</creatorcontrib><creatorcontrib>Rota, Alberto</creatorcontrib><creatorcontrib>Benedetti, Stefania</creatorcontrib><creatorcontrib>Bona, Alessandro di</creatorcontrib><creatorcontrib>Ribeiro, Joana Margarida Fernandes Silva</creatorcontrib><creatorcontrib>Tavares, C. J.</creatorcontrib><creatorcontrib>Rossella, Francesco</creatorcontrib><collection>RCAAP open access repository</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isram, Muhammad</au><au>Maffei, Riccardo Magrin</au><au>Demontis, Valeria</au><au>Martini, Leonardo</au><au>Forti, Stiven</au><au>Coletti, Camilla</au><au>Bellani, Vittorio</au><au>Mescola, Andrea</au><au>Paolicelli, Guido</au><au>Rota, Alberto</au><au>Benedetti, Stefania</au><au>Bona, Alessandro di</au><au>Ribeiro, Joana Margarida Fernandes Silva</au><au>Tavares, C. J.</au><au>Rossella, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric and structural properties of sputtered AZO thin films with varying al doping ratios</atitle><jtitle>Coatings (Basel)</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>13</volume><issue>4</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Nanomaterials can be game-changers in the arena of sustainable energy production because they may enable highly efficient thermoelectric energy conversion and harvesting. For this purpose, doped thin film oxides have been proven to be promising systems for achieving high thermoelectric performances. In this work, the design, realization, and experimental investigation of the thermo electric properties exhibited by a set of five Al:ZnO thin films with thicknesses of 300 nm and Al doping levels ranging from 2 to 8 at.% are described. Using a multi-technique approach, the main structural and morphological features of the grown thin films are addressed, as well as the electrical and thermoelectrical transport properties. The results show that the samples exhibited a Seebeck coefficient absolute value in the range of 22–33 µV/K, assuming their maximum doping level was 8 at.%, while the samples’ resistivity was decreased below 2 × 10−3 Ohm·cm with a doping level of 3 at.%. The findings shine light on the perspectives of the applications of the metal ZnO thin film technology for thermoelectrics.
This research was funded by MIUR-PON, scholarship PhD program “Physics and nano sciences”021/22.“Nanotecnologie per la termoelettricità e l’energy harvesting” (Azione IV.5 “Dottorati su tematiche green”) and by project QUANTEP, INFN CSN5. VB was supported by the project “Brosynano”MICINN-FEDER (PID2019-106820RB-C22). C.T. acknowledges the funding from FCT/PIDDAC through the Strategic Funds project reference UIDB/04650/2020-2023. A.M., G.P. acknowledge support by the Italian Ministry of University and Research through PRIN UTFROM N. 20178PZCB5. This work was also partially funded under the National Recovery and Resilience Plan (NRRP), Mission 04 Component 2 Investment 1.5 – NextGenerationEU, Call for tender n. 3277 dated 30/12/2021. Award Number: 0001052 dated 23/06/2022.</abstract><cop>Basel</cop><pub>Multidisciplinary Digital Publishing Institute</pub><doi>10.3390/coatings13040691</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6801-1564</orcidid><orcidid>https://orcid.org/0000-0003-2914-1459</orcidid><orcidid>https://orcid.org/0000-0002-9431-2309</orcidid><orcidid>https://orcid.org/0000-0002-1667-7564</orcidid><orcidid>https://orcid.org/0000-0002-2683-4818</orcidid><orcidid>https://orcid.org/0000-0001-5757-0096</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6412 |
ispartof | Coatings (Basel), 2023-04, Vol.13 (4), p.1-12 |
issn | 2079-6412 2079-6412 |
language | eng |
recordid | cdi_proquest_journals_2806517394 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Composite materials Conductivity Dielectric films Doping Electronic transport Energy conversion Energy harvesting Glass substrates Investigations Lasers Morphology Nanomaterials Nanoscale thermoelectricity Optics Science & Technology Seebeck coefficient Seebeck effect Software Spectrum analysis Thermoelectric energy conversion Thermoelectricity Thickness Thin films Transport properties Zinc oxide ZnO |
title | Thermoelectric and structural properties of sputtered AZO thin films with varying al doping ratios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20and%20structural%20properties%20of%20sputtered%20AZO%20thin%20films%20with%20varying%20al%20doping%20ratios&rft.jtitle=Coatings%20(Basel)&rft.au=Isram,%20Muhammad&rft.date=2023-04-01&rft.volume=13&rft.issue=4&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings13040691&rft_dat=%3Cgale_proqu%3EA747442841%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806517394&rft_id=info:pmid/&rft_galeid=A747442841&rfr_iscdi=true |