Simultaneous Oxidation of Emerging Pollutants in Real Wastewater by the Advanced Fenton Oxidation Process
Since the conventional processes employed in most wastewater treatment plants (WWTPs) worldwide are not designed to entirely remove or oxidize emerging pollutants, which, due to their incidence and persistence, can cause damage to both the environment and human health, several options for their degr...
Gespeichert in:
Veröffentlicht in: | Catalysts 2023-04, Vol.13 (4), p.748 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 748 |
container_title | Catalysts |
container_volume | 13 |
creator | Bracamontes-Ruelas, Alexis Rubén Reyes-Vidal, Yolanda Irigoyen-Campuzano, José Rafael Reynoso-Cuevas, Liliana |
description | Since the conventional processes employed in most wastewater treatment plants (WWTPs) worldwide are not designed to entirely remove or oxidize emerging pollutants, which, due to their incidence and persistence, can cause damage to both the environment and human health, several options for their degradation and removal have emerged. Coupling the advanced Fenton oxidation process as a polishing or tertiary wastewater treatment alternative within conventional WWTP processes stands out among the treatment options. Therefore, the main objective of this research was to evaluate, at the laboratory level, the ability of the advanced Fenton oxidation process to oxidize triclosan, ibuprofen, DEET (N, N-diethyl-meta-toluamide), carbamazepine, caffeine, and acesulfame-K, which represent several groups of emerging pollutants in real wastewater from the second settling tank of a municipal WWTP. The compound used as a catalyst (Fe2+) supplier in the advanced Fenton oxidation process was ferrous sulfate heptahydrate (FeSO4•7H2O). The results obtained upon application showed that the advanced Fenton oxidation process could simultaneously oxidize and remove practically the total concentration of the above-mentioned emerging pollutants, except for DEET (85.21%), in conjunction with the chemical oxygen demand (COD), total suspended solids (TSS), and fecal coliforms (FC, pathogen group) in the effluent generated by the advanced Fenton oxidation process. |
doi_str_mv | 10.3390/catal13040748 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2806516497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747309171</galeid><sourcerecordid>A747309171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-6f375e35dd3426594f6cc06c85edde9bda8d6eb1d154c14ba217b7e91b584af13</originalsourceid><addsrcrecordid>eNpVkd9LwzAQx4MoOOYefQ_43Jk0adM-jrGpMNjwBz6WNLnOjDaZSaruv7djgnr3cMfxvc_BfRG6pmTKWElulYyypYxwInhxhkYpESzhjPPzP_0lmoSwI0OUlBU0GyHzZLq-jdKC6wNefxkto3EWuwYvOvBbY7d449q2HyQxYGPxI8gWv8oQ4VNG8Lg-4PgGeKY_pFWg8RJsHAC_qI13CkK4QheNbANMfuoYvSwXz_P7ZLW-e5jPVolinMUkb5jIgGVaM57mWcmbXCmSqyIDraGstSx0DjXVNOOK8lqmVNQCSlpnBZcNZWN0c-LuvXvvIcRq53pvh5NVWpA8ozkvxaCanlRb2UJlbOOil2pIDZ1RzkJjhvlMcMGGX4kjNjktKO9C8NBUe2866Q8VJdXRgeqfA-wbeoB6fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806516497</pqid></control><display><type>article</type><title>Simultaneous Oxidation of Emerging Pollutants in Real Wastewater by the Advanced Fenton Oxidation Process</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bracamontes-Ruelas, Alexis Rubén ; Reyes-Vidal, Yolanda ; Irigoyen-Campuzano, José Rafael ; Reynoso-Cuevas, Liliana</creator><creatorcontrib>Bracamontes-Ruelas, Alexis Rubén ; Reyes-Vidal, Yolanda ; Irigoyen-Campuzano, José Rafael ; Reynoso-Cuevas, Liliana</creatorcontrib><description>Since the conventional processes employed in most wastewater treatment plants (WWTPs) worldwide are not designed to entirely remove or oxidize emerging pollutants, which, due to their incidence and persistence, can cause damage to both the environment and human health, several options for their degradation and removal have emerged. Coupling the advanced Fenton oxidation process as a polishing or tertiary wastewater treatment alternative within conventional WWTP processes stands out among the treatment options. Therefore, the main objective of this research was to evaluate, at the laboratory level, the ability of the advanced Fenton oxidation process to oxidize triclosan, ibuprofen, DEET (N, N-diethyl-meta-toluamide), carbamazepine, caffeine, and acesulfame-K, which represent several groups of emerging pollutants in real wastewater from the second settling tank of a municipal WWTP. The compound used as a catalyst (Fe2+) supplier in the advanced Fenton oxidation process was ferrous sulfate heptahydrate (FeSO4•7H2O). The results obtained upon application showed that the advanced Fenton oxidation process could simultaneously oxidize and remove practically the total concentration of the above-mentioned emerging pollutants, except for DEET (85.21%), in conjunction with the chemical oxygen demand (COD), total suspended solids (TSS), and fecal coliforms (FC, pathogen group) in the effluent generated by the advanced Fenton oxidation process.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal13040748</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Caffeine ; Catalysts ; Chemical oxygen demand ; Chemical reactions ; Coliforms ; Drinking water ; Effluents ; Iron sulfates ; Laboratories ; Mexico ; Nonsteroidal anti-inflammatory drugs ; Organic chemicals ; Oxidation ; Oxidation-reduction reaction ; Personal grooming ; Pollutants ; Sedimentation & deposition ; Sedimentation tanks ; Solid suspensions ; Wastewater ; Wastewater treatment ; Water pollution ; Water treatment</subject><ispartof>Catalysts, 2023-04, Vol.13 (4), p.748</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-6f375e35dd3426594f6cc06c85edde9bda8d6eb1d154c14ba217b7e91b584af13</citedby><cites>FETCH-LOGICAL-c343t-6f375e35dd3426594f6cc06c85edde9bda8d6eb1d154c14ba217b7e91b584af13</cites><orcidid>0000-0003-1922-0217 ; 0000-0001-8736-8374 ; 0000-0003-0504-3002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bracamontes-Ruelas, Alexis Rubén</creatorcontrib><creatorcontrib>Reyes-Vidal, Yolanda</creatorcontrib><creatorcontrib>Irigoyen-Campuzano, José Rafael</creatorcontrib><creatorcontrib>Reynoso-Cuevas, Liliana</creatorcontrib><title>Simultaneous Oxidation of Emerging Pollutants in Real Wastewater by the Advanced Fenton Oxidation Process</title><title>Catalysts</title><description>Since the conventional processes employed in most wastewater treatment plants (WWTPs) worldwide are not designed to entirely remove or oxidize emerging pollutants, which, due to their incidence and persistence, can cause damage to both the environment and human health, several options for their degradation and removal have emerged. Coupling the advanced Fenton oxidation process as a polishing or tertiary wastewater treatment alternative within conventional WWTP processes stands out among the treatment options. Therefore, the main objective of this research was to evaluate, at the laboratory level, the ability of the advanced Fenton oxidation process to oxidize triclosan, ibuprofen, DEET (N, N-diethyl-meta-toluamide), carbamazepine, caffeine, and acesulfame-K, which represent several groups of emerging pollutants in real wastewater from the second settling tank of a municipal WWTP. The compound used as a catalyst (Fe2+) supplier in the advanced Fenton oxidation process was ferrous sulfate heptahydrate (FeSO4•7H2O). The results obtained upon application showed that the advanced Fenton oxidation process could simultaneously oxidize and remove practically the total concentration of the above-mentioned emerging pollutants, except for DEET (85.21%), in conjunction with the chemical oxygen demand (COD), total suspended solids (TSS), and fecal coliforms (FC, pathogen group) in the effluent generated by the advanced Fenton oxidation process.</description><subject>Caffeine</subject><subject>Catalysts</subject><subject>Chemical oxygen demand</subject><subject>Chemical reactions</subject><subject>Coliforms</subject><subject>Drinking water</subject><subject>Effluents</subject><subject>Iron sulfates</subject><subject>Laboratories</subject><subject>Mexico</subject><subject>Nonsteroidal anti-inflammatory drugs</subject><subject>Organic chemicals</subject><subject>Oxidation</subject><subject>Oxidation-reduction reaction</subject><subject>Personal grooming</subject><subject>Pollutants</subject><subject>Sedimentation & deposition</subject><subject>Sedimentation tanks</subject><subject>Solid suspensions</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Water pollution</subject><subject>Water treatment</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkd9LwzAQx4MoOOYefQ_43Jk0adM-jrGpMNjwBz6WNLnOjDaZSaruv7djgnr3cMfxvc_BfRG6pmTKWElulYyypYxwInhxhkYpESzhjPPzP_0lmoSwI0OUlBU0GyHzZLq-jdKC6wNefxkto3EWuwYvOvBbY7d449q2HyQxYGPxI8gWv8oQ4VNG8Lg-4PgGeKY_pFWg8RJsHAC_qI13CkK4QheNbANMfuoYvSwXz_P7ZLW-e5jPVolinMUkb5jIgGVaM57mWcmbXCmSqyIDraGstSx0DjXVNOOK8lqmVNQCSlpnBZcNZWN0c-LuvXvvIcRq53pvh5NVWpA8ozkvxaCanlRb2UJlbOOil2pIDZ1RzkJjhvlMcMGGX4kjNjktKO9C8NBUe2866Q8VJdXRgeqfA-wbeoB6fw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Bracamontes-Ruelas, Alexis Rubén</creator><creator>Reyes-Vidal, Yolanda</creator><creator>Irigoyen-Campuzano, José Rafael</creator><creator>Reynoso-Cuevas, Liliana</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1922-0217</orcidid><orcidid>https://orcid.org/0000-0001-8736-8374</orcidid><orcidid>https://orcid.org/0000-0003-0504-3002</orcidid></search><sort><creationdate>20230401</creationdate><title>Simultaneous Oxidation of Emerging Pollutants in Real Wastewater by the Advanced Fenton Oxidation Process</title><author>Bracamontes-Ruelas, Alexis Rubén ; Reyes-Vidal, Yolanda ; Irigoyen-Campuzano, José Rafael ; Reynoso-Cuevas, Liliana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-6f375e35dd3426594f6cc06c85edde9bda8d6eb1d154c14ba217b7e91b584af13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Caffeine</topic><topic>Catalysts</topic><topic>Chemical oxygen demand</topic><topic>Chemical reactions</topic><topic>Coliforms</topic><topic>Drinking water</topic><topic>Effluents</topic><topic>Iron sulfates</topic><topic>Laboratories</topic><topic>Mexico</topic><topic>Nonsteroidal anti-inflammatory drugs</topic><topic>Organic chemicals</topic><topic>Oxidation</topic><topic>Oxidation-reduction reaction</topic><topic>Personal grooming</topic><topic>Pollutants</topic><topic>Sedimentation & deposition</topic><topic>Sedimentation tanks</topic><topic>Solid suspensions</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Water pollution</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bracamontes-Ruelas, Alexis Rubén</creatorcontrib><creatorcontrib>Reyes-Vidal, Yolanda</creatorcontrib><creatorcontrib>Irigoyen-Campuzano, José Rafael</creatorcontrib><creatorcontrib>Reynoso-Cuevas, Liliana</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bracamontes-Ruelas, Alexis Rubén</au><au>Reyes-Vidal, Yolanda</au><au>Irigoyen-Campuzano, José Rafael</au><au>Reynoso-Cuevas, Liliana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Oxidation of Emerging Pollutants in Real Wastewater by the Advanced Fenton Oxidation Process</atitle><jtitle>Catalysts</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>13</volume><issue>4</issue><spage>748</spage><pages>748-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>Since the conventional processes employed in most wastewater treatment plants (WWTPs) worldwide are not designed to entirely remove or oxidize emerging pollutants, which, due to their incidence and persistence, can cause damage to both the environment and human health, several options for their degradation and removal have emerged. Coupling the advanced Fenton oxidation process as a polishing or tertiary wastewater treatment alternative within conventional WWTP processes stands out among the treatment options. Therefore, the main objective of this research was to evaluate, at the laboratory level, the ability of the advanced Fenton oxidation process to oxidize triclosan, ibuprofen, DEET (N, N-diethyl-meta-toluamide), carbamazepine, caffeine, and acesulfame-K, which represent several groups of emerging pollutants in real wastewater from the second settling tank of a municipal WWTP. The compound used as a catalyst (Fe2+) supplier in the advanced Fenton oxidation process was ferrous sulfate heptahydrate (FeSO4•7H2O). The results obtained upon application showed that the advanced Fenton oxidation process could simultaneously oxidize and remove practically the total concentration of the above-mentioned emerging pollutants, except for DEET (85.21%), in conjunction with the chemical oxygen demand (COD), total suspended solids (TSS), and fecal coliforms (FC, pathogen group) in the effluent generated by the advanced Fenton oxidation process.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal13040748</doi><orcidid>https://orcid.org/0000-0003-1922-0217</orcidid><orcidid>https://orcid.org/0000-0001-8736-8374</orcidid><orcidid>https://orcid.org/0000-0003-0504-3002</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4344 |
ispartof | Catalysts, 2023-04, Vol.13 (4), p.748 |
issn | 2073-4344 2073-4344 |
language | eng |
recordid | cdi_proquest_journals_2806516497 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Caffeine Catalysts Chemical oxygen demand Chemical reactions Coliforms Drinking water Effluents Iron sulfates Laboratories Mexico Nonsteroidal anti-inflammatory drugs Organic chemicals Oxidation Oxidation-reduction reaction Personal grooming Pollutants Sedimentation & deposition Sedimentation tanks Solid suspensions Wastewater Wastewater treatment Water pollution Water treatment |
title | Simultaneous Oxidation of Emerging Pollutants in Real Wastewater by the Advanced Fenton Oxidation Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Oxidation%20of%20Emerging%20Pollutants%20in%20Real%20Wastewater%20by%20the%20Advanced%20Fenton%20Oxidation%20Process&rft.jtitle=Catalysts&rft.au=Bracamontes-Ruelas,%20Alexis%20Rub%C3%A9n&rft.date=2023-04-01&rft.volume=13&rft.issue=4&rft.spage=748&rft.pages=748-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal13040748&rft_dat=%3Cgale_proqu%3EA747309171%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806516497&rft_id=info:pmid/&rft_galeid=A747309171&rfr_iscdi=true |