A novel machine learning algorithm for interval systems approximation based on artificial neural network

In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 2023-06, Vol.34 (5), p.2171-2184
Hauptverfasser: Zerrougui, Raouf, Adamou-Mitiche, Amel B. H., Mitiche, Lahcene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2184
container_issue 5
container_start_page 2171
container_title Journal of intelligent manufacturing
container_volume 34
creator Zerrougui, Raouf
Adamou-Mitiche, Amel B. H.
Mitiche, Lahcene
description In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature.
doi_str_mv 10.1007/s10845-021-01874-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2806269837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806269837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c141520e969ffbd216707e4e921089301b6c80e66f28d15d20aa8111f7e3c6493</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwscQ7sOrFjH6uKP6kSFzhbbuK0LolT7LTQt8c0SNw47R6-md0ZQq4RbhGgvIsIsuAZMMwAZVlkcEImyEuWSSz4KZmA4iLjHPk5uYhxAwBKCpyQ9Yz6fm9b2plq7bylrTXBO7-ipl31wQ3rjjZ9oM4PNuxNS-MhDraL1Gy3of9ynRlc7-nSRFvTtJgwuMZVLpHe7sJxDJ99eL8kZ41po736nVPy9nD_On_KFi-Pz_PZIqtyVENWYYGcgVVCNc2yZihKKG1hFUsJVQ64FJUEK0TDZI28ZmCMRMSmtHklCpVPyc3om9772Nk46E2_Cz6d1EyCYELJvEwUG6kq9DEG2-htSFnCQSPon0b12KhOjepjoxqSKB9FMcF-ZcOf9T-qb4xZeeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806269837</pqid></control><display><type>article</type><title>A novel machine learning algorithm for interval systems approximation based on artificial neural network</title><source>Springer Nature - Complete Springer Journals</source><creator>Zerrougui, Raouf ; Adamou-Mitiche, Amel B. H. ; Mitiche, Lahcene</creator><creatorcontrib>Zerrougui, Raouf ; Adamou-Mitiche, Amel B. H. ; Mitiche, Lahcene</creatorcontrib><description>In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-021-01874-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced manufacturing technologies ; Algorithms ; Approximation ; Artificial intelligence ; Artificial neural networks ; Business and Management ; Control ; Dynamic stability ; Dynamical systems ; Machine learning ; Machines ; Manufacturing ; Mathematical analysis ; Mechatronics ; Methods ; Neural networks ; Polynomials ; Processes ; Production ; Robotics ; Simulation ; Spectrum analysis</subject><ispartof>Journal of intelligent manufacturing, 2023-06, Vol.34 (5), p.2171-2184</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c141520e969ffbd216707e4e921089301b6c80e66f28d15d20aa8111f7e3c6493</citedby><cites>FETCH-LOGICAL-c319t-c141520e969ffbd216707e4e921089301b6c80e66f28d15d20aa8111f7e3c6493</cites><orcidid>0000-0003-3840-4986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-021-01874-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-021-01874-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zerrougui, Raouf</creatorcontrib><creatorcontrib>Adamou-Mitiche, Amel B. H.</creatorcontrib><creatorcontrib>Mitiche, Lahcene</creatorcontrib><title>A novel machine learning algorithm for interval systems approximation based on artificial neural network</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature.</description><subject>Advanced manufacturing technologies</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Business and Management</subject><subject>Control</subject><subject>Dynamic stability</subject><subject>Dynamical systems</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mathematical analysis</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Processes</subject><subject>Production</subject><subject>Robotics</subject><subject>Simulation</subject><subject>Spectrum analysis</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApwscQ7sOrFjH6uKP6kSFzhbbuK0LolT7LTQt8c0SNw47R6-md0ZQq4RbhGgvIsIsuAZMMwAZVlkcEImyEuWSSz4KZmA4iLjHPk5uYhxAwBKCpyQ9Yz6fm9b2plq7bylrTXBO7-ipl31wQ3rjjZ9oM4PNuxNS-MhDraL1Gy3of9ynRlc7-nSRFvTtJgwuMZVLpHe7sJxDJ99eL8kZ41po736nVPy9nD_On_KFi-Pz_PZIqtyVENWYYGcgVVCNc2yZihKKG1hFUsJVQ64FJUEK0TDZI28ZmCMRMSmtHklCpVPyc3om9772Nk46E2_Cz6d1EyCYELJvEwUG6kq9DEG2-htSFnCQSPon0b12KhOjepjoxqSKB9FMcF-ZcOf9T-qb4xZeeA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zerrougui, Raouf</creator><creator>Adamou-Mitiche, Amel B. H.</creator><creator>Mitiche, Lahcene</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3840-4986</orcidid></search><sort><creationdate>20230601</creationdate><title>A novel machine learning algorithm for interval systems approximation based on artificial neural network</title><author>Zerrougui, Raouf ; Adamou-Mitiche, Amel B. H. ; Mitiche, Lahcene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c141520e969ffbd216707e4e921089301b6c80e66f28d15d20aa8111f7e3c6493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced manufacturing technologies</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Business and Management</topic><topic>Control</topic><topic>Dynamic stability</topic><topic>Dynamical systems</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mathematical analysis</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Processes</topic><topic>Production</topic><topic>Robotics</topic><topic>Simulation</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zerrougui, Raouf</creatorcontrib><creatorcontrib>Adamou-Mitiche, Amel B. H.</creatorcontrib><creatorcontrib>Mitiche, Lahcene</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zerrougui, Raouf</au><au>Adamou-Mitiche, Amel B. H.</au><au>Mitiche, Lahcene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel machine learning algorithm for interval systems approximation based on artificial neural network</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>34</volume><issue>5</issue><spage>2171</spage><epage>2184</epage><pages>2171-2184</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>In recent years, order-reduction techniques based on artificial intelligence algorithms have become a topic of interest in the structural dynamics community. In this paper, we describe a new artificial intelligence technique based on the artificial neural network used to reduce a large interval system. Applied to reduce the degree of the polynomial numerator and denominator each separately, by allowing them to learn automatically from the original system, this machine learning phase allows the algorithm to improve over time and control performance of the approximation, maintaining as much as possible the stability of the dynamic system, and reducing errors between the original system and the reduced system that are presented as a very acceptable approximation, a comparison study is presented between existing works and the proposed technique, with the help of examples from literature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-021-01874-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3840-4986</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0956-5515
ispartof Journal of intelligent manufacturing, 2023-06, Vol.34 (5), p.2171-2184
issn 0956-5515
1572-8145
language eng
recordid cdi_proquest_journals_2806269837
source Springer Nature - Complete Springer Journals
subjects Advanced manufacturing technologies
Algorithms
Approximation
Artificial intelligence
Artificial neural networks
Business and Management
Control
Dynamic stability
Dynamical systems
Machine learning
Machines
Manufacturing
Mathematical analysis
Mechatronics
Methods
Neural networks
Polynomials
Processes
Production
Robotics
Simulation
Spectrum analysis
title A novel machine learning algorithm for interval systems approximation based on artificial neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20machine%20learning%20algorithm%20for%20interval%20systems%20approximation%20based%20on%20artificial%20neural%20network&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Zerrougui,%20Raouf&rft.date=2023-06-01&rft.volume=34&rft.issue=5&rft.spage=2171&rft.epage=2184&rft.pages=2171-2184&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-021-01874-0&rft_dat=%3Cproquest_cross%3E2806269837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806269837&rft_id=info:pmid/&rfr_iscdi=true