Superiorized Adaptive Projected Subgradient Method With Application to MIMO Detection

In this paper, we show that the adaptive projected subgradient method (APSM) is bounded perturbation resilient. To illustrate a potential application of this result, we propose a set-theoretic framework for MIMO detection, and we devise algorithms based on a superiorized APSM. Various low-complexity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2023-01, Vol.71, p.1-13
Hauptverfasser: Fink, Jochen, Cavalcante, Renato L. G., Stanczak, Slawomir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on signal processing
container_volume 71
creator Fink, Jochen
Cavalcante, Renato L. G.
Stanczak, Slawomir
description In this paper, we show that the adaptive projected subgradient method (APSM) is bounded perturbation resilient. To illustrate a potential application of this result, we propose a set-theoretic framework for MIMO detection, and we devise algorithms based on a superiorized APSM. Various low-complexity MIMO detection algorithms achieve excellent performance on i.i.d. Gaussian channels, but they typically incur high performance loss if realistic channel models (e.g., correlated channels) are considered. Compared to existing low-complexity iterative detectors such as individually optimal large-MIMO approximate message passing (IO-LAMA), the proposed algorithms can achieve considerably lower symbol error ratios over correlated channels. At the same time, the proposed methods do not require matrix inverses, and their complexity is similar to IO-LAMA.
doi_str_mv 10.1109/TSP.2023.3263255
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2806222412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10088424</ieee_id><sourcerecordid>2806222412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-66b5ee110c38f34c916caf85a2756528a04c74ba9203e8e829e484bb2880468c3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfma7PZY6lfhZYW2qK3kM1ObUpt1mxW0L_elPbgaYbHezOPH0K3lAwoJeXDcjEfMML4gDPJWZ6foR4tBc2IKOR52knOs1wV75foqm23hFAhStlDq0XXQHA-uF-o8bA2TXTfgOfBb8HGJC266iOY2sE-4inEja_xm4sbPGyanbMmOr_H0ePpeDrDjxBTKCnX6GJtdi3cnGYfrZ6flqPXbDJ7GY-Gk8wyVcRMyioHSPUtV2subEmlNWuVG1bkMmfKEGELUZmSEQ4KFCtBKFFVTCkipLK8j-6Pd5vgvzpoo976LuzTS80UkYwxQVlykaPLBt-2Ada6Ce7ThB9NiT7A0wmePsDTJ3gpcneMOAD4ZydKCSb4HwTHaj4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806222412</pqid></control><display><type>article</type><title>Superiorized Adaptive Projected Subgradient Method With Application to MIMO Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Fink, Jochen ; Cavalcante, Renato L. G. ; Stanczak, Slawomir</creator><creatorcontrib>Fink, Jochen ; Cavalcante, Renato L. G. ; Stanczak, Slawomir</creatorcontrib><description>In this paper, we show that the adaptive projected subgradient method (APSM) is bounded perturbation resilient. To illustrate a potential application of this result, we propose a set-theoretic framework for MIMO detection, and we devise algorithms based on a superiorized APSM. Various low-complexity MIMO detection algorithms achieve excellent performance on i.i.d. Gaussian channels, but they typically incur high performance loss if realistic channel models (e.g., correlated channels) are considered. Compared to existing low-complexity iterative detectors such as individually optimal large-MIMO approximate message passing (IO-LAMA), the proposed algorithms can achieve considerably lower symbol error ratios over correlated channels. At the same time, the proposed methods do not require matrix inverses, and their complexity is similar to IO-LAMA.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2023.3263255</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adaptive projected subgradient method ; Algorithms ; Approximation algorithms ; Channels ; Complexity ; Detectors ; Hilbert space ; Iterative methods ; Message passing ; MIMO communication ; MIMO detection ; nonconvex optimization ; Perturbation ; Perturbation methods ; Resilience ; Signal processing algorithms ; superiorization</subject><ispartof>IEEE transactions on signal processing, 2023-01, Vol.71, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-66b5ee110c38f34c916caf85a2756528a04c74ba9203e8e829e484bb2880468c3</cites><orcidid>0000-0003-3829-4668 ; 0000-0003-4939-6758 ; 0000-0002-8826-7580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10088424$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Fink, Jochen</creatorcontrib><creatorcontrib>Cavalcante, Renato L. G.</creatorcontrib><creatorcontrib>Stanczak, Slawomir</creatorcontrib><title>Superiorized Adaptive Projected Subgradient Method With Application to MIMO Detection</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, we show that the adaptive projected subgradient method (APSM) is bounded perturbation resilient. To illustrate a potential application of this result, we propose a set-theoretic framework for MIMO detection, and we devise algorithms based on a superiorized APSM. Various low-complexity MIMO detection algorithms achieve excellent performance on i.i.d. Gaussian channels, but they typically incur high performance loss if realistic channel models (e.g., correlated channels) are considered. Compared to existing low-complexity iterative detectors such as individually optimal large-MIMO approximate message passing (IO-LAMA), the proposed algorithms can achieve considerably lower symbol error ratios over correlated channels. At the same time, the proposed methods do not require matrix inverses, and their complexity is similar to IO-LAMA.</description><subject>adaptive projected subgradient method</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Channels</subject><subject>Complexity</subject><subject>Detectors</subject><subject>Hilbert space</subject><subject>Iterative methods</subject><subject>Message passing</subject><subject>MIMO communication</subject><subject>MIMO detection</subject><subject>nonconvex optimization</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Resilience</subject><subject>Signal processing algorithms</subject><subject>superiorization</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfma7PZY6lfhZYW2qK3kM1ObUpt1mxW0L_elPbgaYbHezOPH0K3lAwoJeXDcjEfMML4gDPJWZ6foR4tBc2IKOR52knOs1wV75foqm23hFAhStlDq0XXQHA-uF-o8bA2TXTfgOfBb8HGJC266iOY2sE-4inEja_xm4sbPGyanbMmOr_H0ePpeDrDjxBTKCnX6GJtdi3cnGYfrZ6flqPXbDJ7GY-Gk8wyVcRMyioHSPUtV2subEmlNWuVG1bkMmfKEGELUZmSEQ4KFCtBKFFVTCkipLK8j-6Pd5vgvzpoo976LuzTS80UkYwxQVlykaPLBt-2Ada6Ce7ThB9NiT7A0wmePsDTJ3gpcneMOAD4ZydKCSb4HwTHaj4</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Fink, Jochen</creator><creator>Cavalcante, Renato L. G.</creator><creator>Stanczak, Slawomir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3829-4668</orcidid><orcidid>https://orcid.org/0000-0003-4939-6758</orcidid><orcidid>https://orcid.org/0000-0002-8826-7580</orcidid></search><sort><creationdate>20230101</creationdate><title>Superiorized Adaptive Projected Subgradient Method With Application to MIMO Detection</title><author>Fink, Jochen ; Cavalcante, Renato L. G. ; Stanczak, Slawomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-66b5ee110c38f34c916caf85a2756528a04c74ba9203e8e829e484bb2880468c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adaptive projected subgradient method</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Channels</topic><topic>Complexity</topic><topic>Detectors</topic><topic>Hilbert space</topic><topic>Iterative methods</topic><topic>Message passing</topic><topic>MIMO communication</topic><topic>MIMO detection</topic><topic>nonconvex optimization</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Resilience</topic><topic>Signal processing algorithms</topic><topic>superiorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fink, Jochen</creatorcontrib><creatorcontrib>Cavalcante, Renato L. G.</creatorcontrib><creatorcontrib>Stanczak, Slawomir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fink, Jochen</au><au>Cavalcante, Renato L. G.</au><au>Stanczak, Slawomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superiorized Adaptive Projected Subgradient Method With Application to MIMO Detection</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>71</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, we show that the adaptive projected subgradient method (APSM) is bounded perturbation resilient. To illustrate a potential application of this result, we propose a set-theoretic framework for MIMO detection, and we devise algorithms based on a superiorized APSM. Various low-complexity MIMO detection algorithms achieve excellent performance on i.i.d. Gaussian channels, but they typically incur high performance loss if realistic channel models (e.g., correlated channels) are considered. Compared to existing low-complexity iterative detectors such as individually optimal large-MIMO approximate message passing (IO-LAMA), the proposed algorithms can achieve considerably lower symbol error ratios over correlated channels. At the same time, the proposed methods do not require matrix inverses, and their complexity is similar to IO-LAMA.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2023.3263255</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3829-4668</orcidid><orcidid>https://orcid.org/0000-0003-4939-6758</orcidid><orcidid>https://orcid.org/0000-0002-8826-7580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2023-01, Vol.71, p.1-13
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_2806222412
source IEEE Electronic Library (IEL)
subjects adaptive projected subgradient method
Algorithms
Approximation algorithms
Channels
Complexity
Detectors
Hilbert space
Iterative methods
Message passing
MIMO communication
MIMO detection
nonconvex optimization
Perturbation
Perturbation methods
Resilience
Signal processing algorithms
superiorization
title Superiorized Adaptive Projected Subgradient Method With Application to MIMO Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superiorized%20Adaptive%20Projected%20Subgradient%20Method%20With%20Application%20to%20MIMO%20Detection&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Fink,%20Jochen&rft.date=2023-01-01&rft.volume=71&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2023.3263255&rft_dat=%3Cproquest_ieee_%3E2806222412%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806222412&rft_id=info:pmid/&rft_ieee_id=10088424&rfr_iscdi=true