Superiorized Adaptive Projected Subgradient Method With Application to MIMO Detection
In this paper, we show that the adaptive projected subgradient method (APSM) is bounded perturbation resilient. To illustrate a potential application of this result, we propose a set-theoretic framework for MIMO detection, and we devise algorithms based on a superiorized APSM. Various low-complexity...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2023-01, Vol.71, p.1-13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on signal processing |
container_volume | 71 |
creator | Fink, Jochen Cavalcante, Renato L. G. Stanczak, Slawomir |
description | In this paper, we show that the adaptive projected subgradient method (APSM) is bounded perturbation resilient. To illustrate a potential application of this result, we propose a set-theoretic framework for MIMO detection, and we devise algorithms based on a superiorized APSM. Various low-complexity MIMO detection algorithms achieve excellent performance on i.i.d. Gaussian channels, but they typically incur high performance loss if realistic channel models (e.g., correlated channels) are considered. Compared to existing low-complexity iterative detectors such as individually optimal large-MIMO approximate message passing (IO-LAMA), the proposed algorithms can achieve considerably lower symbol error ratios over correlated channels. At the same time, the proposed methods do not require matrix inverses, and their complexity is similar to IO-LAMA. |
doi_str_mv | 10.1109/TSP.2023.3263255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2806222412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10088424</ieee_id><sourcerecordid>2806222412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-66b5ee110c38f34c916caf85a2756528a04c74ba9203e8e829e484bb2880468c3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfma7PZY6lfhZYW2qK3kM1ObUpt1mxW0L_elPbgaYbHezOPH0K3lAwoJeXDcjEfMML4gDPJWZ6foR4tBc2IKOR52knOs1wV75foqm23hFAhStlDq0XXQHA-uF-o8bA2TXTfgOfBb8HGJC266iOY2sE-4inEja_xm4sbPGyanbMmOr_H0ePpeDrDjxBTKCnX6GJtdi3cnGYfrZ6flqPXbDJ7GY-Gk8wyVcRMyioHSPUtV2subEmlNWuVG1bkMmfKEGELUZmSEQ4KFCtBKFFVTCkipLK8j-6Pd5vgvzpoo976LuzTS80UkYwxQVlykaPLBt-2Ada6Ce7ThB9NiT7A0wmePsDTJ3gpcneMOAD4ZydKCSb4HwTHaj4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806222412</pqid></control><display><type>article</type><title>Superiorized Adaptive Projected Subgradient Method With Application to MIMO Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Fink, Jochen ; Cavalcante, Renato L. G. ; Stanczak, Slawomir</creator><creatorcontrib>Fink, Jochen ; Cavalcante, Renato L. G. ; Stanczak, Slawomir</creatorcontrib><description>In this paper, we show that the adaptive projected subgradient method (APSM) is bounded perturbation resilient. To illustrate a potential application of this result, we propose a set-theoretic framework for MIMO detection, and we devise algorithms based on a superiorized APSM. Various low-complexity MIMO detection algorithms achieve excellent performance on i.i.d. Gaussian channels, but they typically incur high performance loss if realistic channel models (e.g., correlated channels) are considered. Compared to existing low-complexity iterative detectors such as individually optimal large-MIMO approximate message passing (IO-LAMA), the proposed algorithms can achieve considerably lower symbol error ratios over correlated channels. At the same time, the proposed methods do not require matrix inverses, and their complexity is similar to IO-LAMA.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2023.3263255</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adaptive projected subgradient method ; Algorithms ; Approximation algorithms ; Channels ; Complexity ; Detectors ; Hilbert space ; Iterative methods ; Message passing ; MIMO communication ; MIMO detection ; nonconvex optimization ; Perturbation ; Perturbation methods ; Resilience ; Signal processing algorithms ; superiorization</subject><ispartof>IEEE transactions on signal processing, 2023-01, Vol.71, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-66b5ee110c38f34c916caf85a2756528a04c74ba9203e8e829e484bb2880468c3</cites><orcidid>0000-0003-3829-4668 ; 0000-0003-4939-6758 ; 0000-0002-8826-7580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10088424$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Fink, Jochen</creatorcontrib><creatorcontrib>Cavalcante, Renato L. G.</creatorcontrib><creatorcontrib>Stanczak, Slawomir</creatorcontrib><title>Superiorized Adaptive Projected Subgradient Method With Application to MIMO Detection</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, we show that the adaptive projected subgradient method (APSM) is bounded perturbation resilient. To illustrate a potential application of this result, we propose a set-theoretic framework for MIMO detection, and we devise algorithms based on a superiorized APSM. Various low-complexity MIMO detection algorithms achieve excellent performance on i.i.d. Gaussian channels, but they typically incur high performance loss if realistic channel models (e.g., correlated channels) are considered. Compared to existing low-complexity iterative detectors such as individually optimal large-MIMO approximate message passing (IO-LAMA), the proposed algorithms can achieve considerably lower symbol error ratios over correlated channels. At the same time, the proposed methods do not require matrix inverses, and their complexity is similar to IO-LAMA.</description><subject>adaptive projected subgradient method</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Channels</subject><subject>Complexity</subject><subject>Detectors</subject><subject>Hilbert space</subject><subject>Iterative methods</subject><subject>Message passing</subject><subject>MIMO communication</subject><subject>MIMO detection</subject><subject>nonconvex optimization</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Resilience</subject><subject>Signal processing algorithms</subject><subject>superiorization</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfma7PZY6lfhZYW2qK3kM1ObUpt1mxW0L_elPbgaYbHezOPH0K3lAwoJeXDcjEfMML4gDPJWZ6foR4tBc2IKOR52knOs1wV75foqm23hFAhStlDq0XXQHA-uF-o8bA2TXTfgOfBb8HGJC266iOY2sE-4inEja_xm4sbPGyanbMmOr_H0ePpeDrDjxBTKCnX6GJtdi3cnGYfrZ6flqPXbDJ7GY-Gk8wyVcRMyioHSPUtV2subEmlNWuVG1bkMmfKEGELUZmSEQ4KFCtBKFFVTCkipLK8j-6Pd5vgvzpoo976LuzTS80UkYwxQVlykaPLBt-2Ada6Ce7ThB9NiT7A0wmePsDTJ3gpcneMOAD4ZydKCSb4HwTHaj4</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Fink, Jochen</creator><creator>Cavalcante, Renato L. G.</creator><creator>Stanczak, Slawomir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3829-4668</orcidid><orcidid>https://orcid.org/0000-0003-4939-6758</orcidid><orcidid>https://orcid.org/0000-0002-8826-7580</orcidid></search><sort><creationdate>20230101</creationdate><title>Superiorized Adaptive Projected Subgradient Method With Application to MIMO Detection</title><author>Fink, Jochen ; Cavalcante, Renato L. G. ; Stanczak, Slawomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-66b5ee110c38f34c916caf85a2756528a04c74ba9203e8e829e484bb2880468c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adaptive projected subgradient method</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Channels</topic><topic>Complexity</topic><topic>Detectors</topic><topic>Hilbert space</topic><topic>Iterative methods</topic><topic>Message passing</topic><topic>MIMO communication</topic><topic>MIMO detection</topic><topic>nonconvex optimization</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Resilience</topic><topic>Signal processing algorithms</topic><topic>superiorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fink, Jochen</creatorcontrib><creatorcontrib>Cavalcante, Renato L. G.</creatorcontrib><creatorcontrib>Stanczak, Slawomir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fink, Jochen</au><au>Cavalcante, Renato L. G.</au><au>Stanczak, Slawomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superiorized Adaptive Projected Subgradient Method With Application to MIMO Detection</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>71</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, we show that the adaptive projected subgradient method (APSM) is bounded perturbation resilient. To illustrate a potential application of this result, we propose a set-theoretic framework for MIMO detection, and we devise algorithms based on a superiorized APSM. Various low-complexity MIMO detection algorithms achieve excellent performance on i.i.d. Gaussian channels, but they typically incur high performance loss if realistic channel models (e.g., correlated channels) are considered. Compared to existing low-complexity iterative detectors such as individually optimal large-MIMO approximate message passing (IO-LAMA), the proposed algorithms can achieve considerably lower symbol error ratios over correlated channels. At the same time, the proposed methods do not require matrix inverses, and their complexity is similar to IO-LAMA.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2023.3263255</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3829-4668</orcidid><orcidid>https://orcid.org/0000-0003-4939-6758</orcidid><orcidid>https://orcid.org/0000-0002-8826-7580</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2023-01, Vol.71, p.1-13 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_2806222412 |
source | IEEE Electronic Library (IEL) |
subjects | adaptive projected subgradient method Algorithms Approximation algorithms Channels Complexity Detectors Hilbert space Iterative methods Message passing MIMO communication MIMO detection nonconvex optimization Perturbation Perturbation methods Resilience Signal processing algorithms superiorization |
title | Superiorized Adaptive Projected Subgradient Method With Application to MIMO Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superiorized%20Adaptive%20Projected%20Subgradient%20Method%20With%20Application%20to%20MIMO%20Detection&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Fink,%20Jochen&rft.date=2023-01-01&rft.volume=71&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2023.3263255&rft_dat=%3Cproquest_ieee_%3E2806222412%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806222412&rft_id=info:pmid/&rft_ieee_id=10088424&rfr_iscdi=true |