NIRS Data Augmentation Technique to Detect Hemodynamic Peaks during Self-Paced Motor Imagery
Optical brain monitoring, such as near-infrared spectroscopy (NIRS), has facilitated numerous brain studies, including those based on machine learning techniques. A large and diverse dataset is necessary for training machine learning algorithms to avoid overfitting a limited amount of data. However,...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Zephaniah Phillips, V Paik, Seung-ho Lee, Seung-Hyun Choi, Eun-Jeong Kim, Beop-Min |
description | Optical brain monitoring, such as near-infrared spectroscopy (NIRS), has facilitated numerous brain studies, including those based on machine learning techniques. A large and diverse dataset is necessary for training machine learning algorithms to avoid overfitting a limited amount of data. However, recruiting sufficient subjects is challenging owing to time and budget constraints. Therefore, we propose an NIRS data generation algorithm that scales NIRS signal components, such as hemodynamic response function, physiological noise, and system spike noise, based on the source-detector distance to augment the training data. The experimental data were augmented with the generated NIRS data to train a convolutional neural network to classify self-paced left- and right-hand motor imagery. Augmenting the training dataset with 1000 generated data points increased the classification accuracy to 86.3 ± 4.1%, indicating a 26% increase compared with training on experimental data only. In addition, we applied Guided Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize the class discriminative features of the input data. The Guided Grad-CAM heatmaps aligned well with the oxy-hemoglobin peaks during self-paced motor imagery. We concluded that the increased cerebral oxygenation, especially in the contralateral hemisphere, was the class-discriminative feature for classifying left- and right-hand motor imagery. |
doi_str_mv | 10.1109/ACCESS.2023.3263489 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2806220291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10089413</ieee_id><doaj_id>oai_doaj_org_article_7a2c436ac37747af840e18dc00101c67</doaj_id><sourcerecordid>2806220291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9082dbbc1227709275bd99eba72ba26d7a003f33f3bfdede0de13bcef2a19a03</originalsourceid><addsrcrecordid>eNpNUdtq4zAQNUsXtrT5gu6DoM_OjiTHsh5Degv0EjZ5LIixNM46ja1WVh7y91XXpXQYmGGYc-ZysuyCw5Rz0H_mi8X1ej0VIORUilIWlf6RnQpe6lzOZHnyLf-VTYZhB8mqVJqp0-z5cfl3za4wIpsfth31EWPre7Yh-69v3w7EomdXFMlGdkedd8ceu9ayFeHLwNwhtP2WrWnf5Cu05NiDjz6wZYdbCsfz7GeD-4Emn_Es29xcbxZ3-f3T7XIxv8-tnOmYa6iEq2vLhVAKtFCz2mlNNSpRoyidQgDZyOR148gROOKyttQI5BpBnmXLkdZ53JnX0HYYjsZja_4XfNgaDLG1ezIKhS1kiVYqVShsqgKIV84CcOC2VInrcuR6DT5dP0Sz84fQp-2NqKAU6cuapy45dtnghyFQ8zWVg_kQxYyimA9RzKcoCfV7RLVE9A0BlS64lO_o-Yer</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806220291</pqid></control><display><type>article</type><title>NIRS Data Augmentation Technique to Detect Hemodynamic Peaks during Self-Paced Motor Imagery</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zephaniah Phillips, V ; Paik, Seung-ho ; Lee, Seung-Hyun ; Choi, Eun-Jeong ; Kim, Beop-Min</creator><creatorcontrib>Zephaniah Phillips, V ; Paik, Seung-ho ; Lee, Seung-Hyun ; Choi, Eun-Jeong ; Kim, Beop-Min</creatorcontrib><description>Optical brain monitoring, such as near-infrared spectroscopy (NIRS), has facilitated numerous brain studies, including those based on machine learning techniques. A large and diverse dataset is necessary for training machine learning algorithms to avoid overfitting a limited amount of data. However, recruiting sufficient subjects is challenging owing to time and budget constraints. Therefore, we propose an NIRS data generation algorithm that scales NIRS signal components, such as hemodynamic response function, physiological noise, and system spike noise, based on the source-detector distance to augment the training data. The experimental data were augmented with the generated NIRS data to train a convolutional neural network to classify self-paced left- and right-hand motor imagery. Augmenting the training dataset with 1000 generated data points increased the classification accuracy to 86.3 ± 4.1%, indicating a 26% increase compared with training on experimental data only. In addition, we applied Guided Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize the class discriminative features of the input data. The Guided Grad-CAM heatmaps aligned well with the oxy-hemoglobin peaks during self-paced motor imagery. We concluded that the increased cerebral oxygenation, especially in the contralateral hemisphere, was the class-discriminative feature for classifying left- and right-hand motor imagery.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3263489</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Brain ; Cerebral oxygenation ; class activation mapping ; convolutional neural network ; Convolutional neural networks ; Data augmentation ; Datasets ; functional near-infrared spectroscopy ; Hemodynamic responses ; Hemodynamics ; Hemoglobin ; Image classification ; Infrared spectra ; Machine learning ; Monitoring ; Near infrared radiation ; Neural networks ; Optical imaging ; optical monitoring ; Oxygenation ; Response functions ; Task analysis ; Training ; Training data</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-9082dbbc1227709275bd99eba72ba26d7a003f33f3bfdede0de13bcef2a19a03</cites><orcidid>0000-0002-1109-6787 ; 0000-0001-7357-7589 ; 0009-0008-7534-4680 ; 0000-0001-5021-2368 ; 0000-0001-6993-3229 ; 0000-0002-1056-5078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10089413$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zephaniah Phillips, V</creatorcontrib><creatorcontrib>Paik, Seung-ho</creatorcontrib><creatorcontrib>Lee, Seung-Hyun</creatorcontrib><creatorcontrib>Choi, Eun-Jeong</creatorcontrib><creatorcontrib>Kim, Beop-Min</creatorcontrib><title>NIRS Data Augmentation Technique to Detect Hemodynamic Peaks during Self-Paced Motor Imagery</title><title>IEEE access</title><addtitle>Access</addtitle><description>Optical brain monitoring, such as near-infrared spectroscopy (NIRS), has facilitated numerous brain studies, including those based on machine learning techniques. A large and diverse dataset is necessary for training machine learning algorithms to avoid overfitting a limited amount of data. However, recruiting sufficient subjects is challenging owing to time and budget constraints. Therefore, we propose an NIRS data generation algorithm that scales NIRS signal components, such as hemodynamic response function, physiological noise, and system spike noise, based on the source-detector distance to augment the training data. The experimental data were augmented with the generated NIRS data to train a convolutional neural network to classify self-paced left- and right-hand motor imagery. Augmenting the training dataset with 1000 generated data points increased the classification accuracy to 86.3 ± 4.1%, indicating a 26% increase compared with training on experimental data only. In addition, we applied Guided Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize the class discriminative features of the input data. The Guided Grad-CAM heatmaps aligned well with the oxy-hemoglobin peaks during self-paced motor imagery. We concluded that the increased cerebral oxygenation, especially in the contralateral hemisphere, was the class-discriminative feature for classifying left- and right-hand motor imagery.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Cerebral oxygenation</subject><subject>class activation mapping</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>functional near-infrared spectroscopy</subject><subject>Hemodynamic responses</subject><subject>Hemodynamics</subject><subject>Hemoglobin</subject><subject>Image classification</subject><subject>Infrared spectra</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Near infrared radiation</subject><subject>Neural networks</subject><subject>Optical imaging</subject><subject>optical monitoring</subject><subject>Oxygenation</subject><subject>Response functions</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtq4zAQNUsXtrT5gu6DoM_OjiTHsh5Degv0EjZ5LIixNM46ja1WVh7y91XXpXQYmGGYc-ZysuyCw5Rz0H_mi8X1ej0VIORUilIWlf6RnQpe6lzOZHnyLf-VTYZhB8mqVJqp0-z5cfl3za4wIpsfth31EWPre7Yh-69v3w7EomdXFMlGdkedd8ceu9ayFeHLwNwhtP2WrWnf5Cu05NiDjz6wZYdbCsfz7GeD-4Emn_Es29xcbxZ3-f3T7XIxv8-tnOmYa6iEq2vLhVAKtFCz2mlNNSpRoyidQgDZyOR148gROOKyttQI5BpBnmXLkdZ53JnX0HYYjsZja_4XfNgaDLG1ezIKhS1kiVYqVShsqgKIV84CcOC2VInrcuR6DT5dP0Sz84fQp-2NqKAU6cuapy45dtnghyFQ8zWVg_kQxYyimA9RzKcoCfV7RLVE9A0BlS64lO_o-Yer</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zephaniah Phillips, V</creator><creator>Paik, Seung-ho</creator><creator>Lee, Seung-Hyun</creator><creator>Choi, Eun-Jeong</creator><creator>Kim, Beop-Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1109-6787</orcidid><orcidid>https://orcid.org/0000-0001-7357-7589</orcidid><orcidid>https://orcid.org/0009-0008-7534-4680</orcidid><orcidid>https://orcid.org/0000-0001-5021-2368</orcidid><orcidid>https://orcid.org/0000-0001-6993-3229</orcidid><orcidid>https://orcid.org/0000-0002-1056-5078</orcidid></search><sort><creationdate>20230101</creationdate><title>NIRS Data Augmentation Technique to Detect Hemodynamic Peaks during Self-Paced Motor Imagery</title><author>Zephaniah Phillips, V ; Paik, Seung-ho ; Lee, Seung-Hyun ; Choi, Eun-Jeong ; Kim, Beop-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9082dbbc1227709275bd99eba72ba26d7a003f33f3bfdede0de13bcef2a19a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Cerebral oxygenation</topic><topic>class activation mapping</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>functional near-infrared spectroscopy</topic><topic>Hemodynamic responses</topic><topic>Hemodynamics</topic><topic>Hemoglobin</topic><topic>Image classification</topic><topic>Infrared spectra</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Near infrared radiation</topic><topic>Neural networks</topic><topic>Optical imaging</topic><topic>optical monitoring</topic><topic>Oxygenation</topic><topic>Response functions</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zephaniah Phillips, V</creatorcontrib><creatorcontrib>Paik, Seung-ho</creatorcontrib><creatorcontrib>Lee, Seung-Hyun</creatorcontrib><creatorcontrib>Choi, Eun-Jeong</creatorcontrib><creatorcontrib>Kim, Beop-Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zephaniah Phillips, V</au><au>Paik, Seung-ho</au><au>Lee, Seung-Hyun</au><au>Choi, Eun-Jeong</au><au>Kim, Beop-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NIRS Data Augmentation Technique to Detect Hemodynamic Peaks during Self-Paced Motor Imagery</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Optical brain monitoring, such as near-infrared spectroscopy (NIRS), has facilitated numerous brain studies, including those based on machine learning techniques. A large and diverse dataset is necessary for training machine learning algorithms to avoid overfitting a limited amount of data. However, recruiting sufficient subjects is challenging owing to time and budget constraints. Therefore, we propose an NIRS data generation algorithm that scales NIRS signal components, such as hemodynamic response function, physiological noise, and system spike noise, based on the source-detector distance to augment the training data. The experimental data were augmented with the generated NIRS data to train a convolutional neural network to classify self-paced left- and right-hand motor imagery. Augmenting the training dataset with 1000 generated data points increased the classification accuracy to 86.3 ± 4.1%, indicating a 26% increase compared with training on experimental data only. In addition, we applied Guided Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize the class discriminative features of the input data. The Guided Grad-CAM heatmaps aligned well with the oxy-hemoglobin peaks during self-paced motor imagery. We concluded that the increased cerebral oxygenation, especially in the contralateral hemisphere, was the class-discriminative feature for classifying left- and right-hand motor imagery.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3263489</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1109-6787</orcidid><orcidid>https://orcid.org/0000-0001-7357-7589</orcidid><orcidid>https://orcid.org/0009-0008-7534-4680</orcidid><orcidid>https://orcid.org/0000-0001-5021-2368</orcidid><orcidid>https://orcid.org/0000-0001-6993-3229</orcidid><orcidid>https://orcid.org/0000-0002-1056-5078</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2806220291 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial neural networks Brain Cerebral oxygenation class activation mapping convolutional neural network Convolutional neural networks Data augmentation Datasets functional near-infrared spectroscopy Hemodynamic responses Hemodynamics Hemoglobin Image classification Infrared spectra Machine learning Monitoring Near infrared radiation Neural networks Optical imaging optical monitoring Oxygenation Response functions Task analysis Training Training data |
title | NIRS Data Augmentation Technique to Detect Hemodynamic Peaks during Self-Paced Motor Imagery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NIRS%20Data%20Augmentation%20Technique%20to%20Detect%20Hemodynamic%20Peaks%20during%20Self-Paced%20Motor%20Imagery&rft.jtitle=IEEE%20access&rft.au=Zephaniah%20Phillips,%20V&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3263489&rft_dat=%3Cproquest_doaj_%3E2806220291%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806220291&rft_id=info:pmid/&rft_ieee_id=10089413&rft_doaj_id=oai_doaj_org_article_7a2c436ac37747af840e18dc00101c67&rfr_iscdi=true |