NIRS Data Augmentation Technique to Detect Hemodynamic Peaks during Self-Paced Motor Imagery

Optical brain monitoring, such as near-infrared spectroscopy (NIRS), has facilitated numerous brain studies, including those based on machine learning techniques. A large and diverse dataset is necessary for training machine learning algorithms to avoid overfitting a limited amount of data. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Zephaniah Phillips, V, Paik, Seung-ho, Lee, Seung-Hyun, Choi, Eun-Jeong, Kim, Beop-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Zephaniah Phillips, V
Paik, Seung-ho
Lee, Seung-Hyun
Choi, Eun-Jeong
Kim, Beop-Min
description Optical brain monitoring, such as near-infrared spectroscopy (NIRS), has facilitated numerous brain studies, including those based on machine learning techniques. A large and diverse dataset is necessary for training machine learning algorithms to avoid overfitting a limited amount of data. However, recruiting sufficient subjects is challenging owing to time and budget constraints. Therefore, we propose an NIRS data generation algorithm that scales NIRS signal components, such as hemodynamic response function, physiological noise, and system spike noise, based on the source-detector distance to augment the training data. The experimental data were augmented with the generated NIRS data to train a convolutional neural network to classify self-paced left- and right-hand motor imagery. Augmenting the training dataset with 1000 generated data points increased the classification accuracy to 86.3 ± 4.1%, indicating a 26% increase compared with training on experimental data only. In addition, we applied Guided Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize the class discriminative features of the input data. The Guided Grad-CAM heatmaps aligned well with the oxy-hemoglobin peaks during self-paced motor imagery. We concluded that the increased cerebral oxygenation, especially in the contralateral hemisphere, was the class-discriminative feature for classifying left- and right-hand motor imagery.
doi_str_mv 10.1109/ACCESS.2023.3263489
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2806220291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10089413</ieee_id><doaj_id>oai_doaj_org_article_7a2c436ac37747af840e18dc00101c67</doaj_id><sourcerecordid>2806220291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9082dbbc1227709275bd99eba72ba26d7a003f33f3bfdede0de13bcef2a19a03</originalsourceid><addsrcrecordid>eNpNUdtq4zAQNUsXtrT5gu6DoM_OjiTHsh5Degv0EjZ5LIixNM46ja1WVh7y91XXpXQYmGGYc-ZysuyCw5Rz0H_mi8X1ej0VIORUilIWlf6RnQpe6lzOZHnyLf-VTYZhB8mqVJqp0-z5cfl3za4wIpsfth31EWPre7Yh-69v3w7EomdXFMlGdkedd8ceu9ayFeHLwNwhtP2WrWnf5Cu05NiDjz6wZYdbCsfz7GeD-4Emn_Es29xcbxZ3-f3T7XIxv8-tnOmYa6iEq2vLhVAKtFCz2mlNNSpRoyidQgDZyOR148gROOKyttQI5BpBnmXLkdZ53JnX0HYYjsZja_4XfNgaDLG1ezIKhS1kiVYqVShsqgKIV84CcOC2VInrcuR6DT5dP0Sz84fQp-2NqKAU6cuapy45dtnghyFQ8zWVg_kQxYyimA9RzKcoCfV7RLVE9A0BlS64lO_o-Yer</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806220291</pqid></control><display><type>article</type><title>NIRS Data Augmentation Technique to Detect Hemodynamic Peaks during Self-Paced Motor Imagery</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zephaniah Phillips, V ; Paik, Seung-ho ; Lee, Seung-Hyun ; Choi, Eun-Jeong ; Kim, Beop-Min</creator><creatorcontrib>Zephaniah Phillips, V ; Paik, Seung-ho ; Lee, Seung-Hyun ; Choi, Eun-Jeong ; Kim, Beop-Min</creatorcontrib><description>Optical brain monitoring, such as near-infrared spectroscopy (NIRS), has facilitated numerous brain studies, including those based on machine learning techniques. A large and diverse dataset is necessary for training machine learning algorithms to avoid overfitting a limited amount of data. However, recruiting sufficient subjects is challenging owing to time and budget constraints. Therefore, we propose an NIRS data generation algorithm that scales NIRS signal components, such as hemodynamic response function, physiological noise, and system spike noise, based on the source-detector distance to augment the training data. The experimental data were augmented with the generated NIRS data to train a convolutional neural network to classify self-paced left- and right-hand motor imagery. Augmenting the training dataset with 1000 generated data points increased the classification accuracy to 86.3 ± 4.1%, indicating a 26% increase compared with training on experimental data only. In addition, we applied Guided Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize the class discriminative features of the input data. The Guided Grad-CAM heatmaps aligned well with the oxy-hemoglobin peaks during self-paced motor imagery. We concluded that the increased cerebral oxygenation, especially in the contralateral hemisphere, was the class-discriminative feature for classifying left- and right-hand motor imagery.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3263489</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Brain ; Cerebral oxygenation ; class activation mapping ; convolutional neural network ; Convolutional neural networks ; Data augmentation ; Datasets ; functional near-infrared spectroscopy ; Hemodynamic responses ; Hemodynamics ; Hemoglobin ; Image classification ; Infrared spectra ; Machine learning ; Monitoring ; Near infrared radiation ; Neural networks ; Optical imaging ; optical monitoring ; Oxygenation ; Response functions ; Task analysis ; Training ; Training data</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-9082dbbc1227709275bd99eba72ba26d7a003f33f3bfdede0de13bcef2a19a03</cites><orcidid>0000-0002-1109-6787 ; 0000-0001-7357-7589 ; 0009-0008-7534-4680 ; 0000-0001-5021-2368 ; 0000-0001-6993-3229 ; 0000-0002-1056-5078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10089413$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zephaniah Phillips, V</creatorcontrib><creatorcontrib>Paik, Seung-ho</creatorcontrib><creatorcontrib>Lee, Seung-Hyun</creatorcontrib><creatorcontrib>Choi, Eun-Jeong</creatorcontrib><creatorcontrib>Kim, Beop-Min</creatorcontrib><title>NIRS Data Augmentation Technique to Detect Hemodynamic Peaks during Self-Paced Motor Imagery</title><title>IEEE access</title><addtitle>Access</addtitle><description>Optical brain monitoring, such as near-infrared spectroscopy (NIRS), has facilitated numerous brain studies, including those based on machine learning techniques. A large and diverse dataset is necessary for training machine learning algorithms to avoid overfitting a limited amount of data. However, recruiting sufficient subjects is challenging owing to time and budget constraints. Therefore, we propose an NIRS data generation algorithm that scales NIRS signal components, such as hemodynamic response function, physiological noise, and system spike noise, based on the source-detector distance to augment the training data. The experimental data were augmented with the generated NIRS data to train a convolutional neural network to classify self-paced left- and right-hand motor imagery. Augmenting the training dataset with 1000 generated data points increased the classification accuracy to 86.3 ± 4.1%, indicating a 26% increase compared with training on experimental data only. In addition, we applied Guided Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize the class discriminative features of the input data. The Guided Grad-CAM heatmaps aligned well with the oxy-hemoglobin peaks during self-paced motor imagery. We concluded that the increased cerebral oxygenation, especially in the contralateral hemisphere, was the class-discriminative feature for classifying left- and right-hand motor imagery.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Cerebral oxygenation</subject><subject>class activation mapping</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>functional near-infrared spectroscopy</subject><subject>Hemodynamic responses</subject><subject>Hemodynamics</subject><subject>Hemoglobin</subject><subject>Image classification</subject><subject>Infrared spectra</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Near infrared radiation</subject><subject>Neural networks</subject><subject>Optical imaging</subject><subject>optical monitoring</subject><subject>Oxygenation</subject><subject>Response functions</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtq4zAQNUsXtrT5gu6DoM_OjiTHsh5Degv0EjZ5LIixNM46ja1WVh7y91XXpXQYmGGYc-ZysuyCw5Rz0H_mi8X1ej0VIORUilIWlf6RnQpe6lzOZHnyLf-VTYZhB8mqVJqp0-z5cfl3za4wIpsfth31EWPre7Yh-69v3w7EomdXFMlGdkedd8ceu9ayFeHLwNwhtP2WrWnf5Cu05NiDjz6wZYdbCsfz7GeD-4Emn_Es29xcbxZ3-f3T7XIxv8-tnOmYa6iEq2vLhVAKtFCz2mlNNSpRoyidQgDZyOR148gROOKyttQI5BpBnmXLkdZ53JnX0HYYjsZja_4XfNgaDLG1ezIKhS1kiVYqVShsqgKIV84CcOC2VInrcuR6DT5dP0Sz84fQp-2NqKAU6cuapy45dtnghyFQ8zWVg_kQxYyimA9RzKcoCfV7RLVE9A0BlS64lO_o-Yer</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zephaniah Phillips, V</creator><creator>Paik, Seung-ho</creator><creator>Lee, Seung-Hyun</creator><creator>Choi, Eun-Jeong</creator><creator>Kim, Beop-Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1109-6787</orcidid><orcidid>https://orcid.org/0000-0001-7357-7589</orcidid><orcidid>https://orcid.org/0009-0008-7534-4680</orcidid><orcidid>https://orcid.org/0000-0001-5021-2368</orcidid><orcidid>https://orcid.org/0000-0001-6993-3229</orcidid><orcidid>https://orcid.org/0000-0002-1056-5078</orcidid></search><sort><creationdate>20230101</creationdate><title>NIRS Data Augmentation Technique to Detect Hemodynamic Peaks during Self-Paced Motor Imagery</title><author>Zephaniah Phillips, V ; Paik, Seung-ho ; Lee, Seung-Hyun ; Choi, Eun-Jeong ; Kim, Beop-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9082dbbc1227709275bd99eba72ba26d7a003f33f3bfdede0de13bcef2a19a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Cerebral oxygenation</topic><topic>class activation mapping</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>functional near-infrared spectroscopy</topic><topic>Hemodynamic responses</topic><topic>Hemodynamics</topic><topic>Hemoglobin</topic><topic>Image classification</topic><topic>Infrared spectra</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Near infrared radiation</topic><topic>Neural networks</topic><topic>Optical imaging</topic><topic>optical monitoring</topic><topic>Oxygenation</topic><topic>Response functions</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zephaniah Phillips, V</creatorcontrib><creatorcontrib>Paik, Seung-ho</creatorcontrib><creatorcontrib>Lee, Seung-Hyun</creatorcontrib><creatorcontrib>Choi, Eun-Jeong</creatorcontrib><creatorcontrib>Kim, Beop-Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zephaniah Phillips, V</au><au>Paik, Seung-ho</au><au>Lee, Seung-Hyun</au><au>Choi, Eun-Jeong</au><au>Kim, Beop-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NIRS Data Augmentation Technique to Detect Hemodynamic Peaks during Self-Paced Motor Imagery</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Optical brain monitoring, such as near-infrared spectroscopy (NIRS), has facilitated numerous brain studies, including those based on machine learning techniques. A large and diverse dataset is necessary for training machine learning algorithms to avoid overfitting a limited amount of data. However, recruiting sufficient subjects is challenging owing to time and budget constraints. Therefore, we propose an NIRS data generation algorithm that scales NIRS signal components, such as hemodynamic response function, physiological noise, and system spike noise, based on the source-detector distance to augment the training data. The experimental data were augmented with the generated NIRS data to train a convolutional neural network to classify self-paced left- and right-hand motor imagery. Augmenting the training dataset with 1000 generated data points increased the classification accuracy to 86.3 ± 4.1%, indicating a 26% increase compared with training on experimental data only. In addition, we applied Guided Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize the class discriminative features of the input data. The Guided Grad-CAM heatmaps aligned well with the oxy-hemoglobin peaks during self-paced motor imagery. We concluded that the increased cerebral oxygenation, especially in the contralateral hemisphere, was the class-discriminative feature for classifying left- and right-hand motor imagery.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3263489</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1109-6787</orcidid><orcidid>https://orcid.org/0000-0001-7357-7589</orcidid><orcidid>https://orcid.org/0009-0008-7534-4680</orcidid><orcidid>https://orcid.org/0000-0001-5021-2368</orcidid><orcidid>https://orcid.org/0000-0001-6993-3229</orcidid><orcidid>https://orcid.org/0000-0002-1056-5078</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2806220291
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial neural networks
Brain
Cerebral oxygenation
class activation mapping
convolutional neural network
Convolutional neural networks
Data augmentation
Datasets
functional near-infrared spectroscopy
Hemodynamic responses
Hemodynamics
Hemoglobin
Image classification
Infrared spectra
Machine learning
Monitoring
Near infrared radiation
Neural networks
Optical imaging
optical monitoring
Oxygenation
Response functions
Task analysis
Training
Training data
title NIRS Data Augmentation Technique to Detect Hemodynamic Peaks during Self-Paced Motor Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NIRS%20Data%20Augmentation%20Technique%20to%20Detect%20Hemodynamic%20Peaks%20during%20Self-Paced%20Motor%20Imagery&rft.jtitle=IEEE%20access&rft.au=Zephaniah%20Phillips,%20V&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3263489&rft_dat=%3Cproquest_doaj_%3E2806220291%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806220291&rft_id=info:pmid/&rft_ieee_id=10089413&rft_doaj_id=oai_doaj_org_article_7a2c436ac37747af840e18dc00101c67&rfr_iscdi=true