Modularized Pre-training for End-to-end Task-oriented Dialogue
Pre-training for e nd-to-end t ask- o riented d ialogue s ystems (EToDs) is a challenging task due to its unique knowledge base query (accuracy) need and lack of sufficient training data (fluency). In this paper, we try to mitigate the above challenges by introducing a modularized pre-training frame...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2023-01, Vol.31, p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE/ACM transactions on audio, speech, and language processing |
container_volume | 31 |
creator | Qin, Libo Xu, Xiao Wang, Lehan Zhang, Yue Che, Wanxiang |
description | Pre-training for e nd-to-end t ask- o riented d ialogue s ystems (EToDs) is a challenging task due to its unique knowledge base query (accuracy) need and lack of sufficient training data (fluency). In this paper, we try to mitigate the above challenges by introducing a modularized pre-training framework for EToDs, which achieves to effectively improve both accuracy and fluency of EToDs through a pre-training paradigm. The core insight is a modular design by decomposing EToDs into a generation (fluency) module and a knowledge-retriever (accuracy) module, which allows us to optimize each module by pre-training these two sub-modules with different well-designed pre-training tasks, respectively. In addition, such a modularized paradigm enables us to make full use of large amounts of KB-free dialogue corpus for the pre-training generation module, which can alleviate the insufficient training problem. Furthermore, we introduce a new consistency-guided data augmentation (CGDA) strategy to cope with the data scarcity problem to better pre-train the knowledge-retriever module. Finally, we fine-tune the pre-trained generation module and knowledge-retriever module jointly. Experimental results on three datasets show that our model achieve superior performance in terms of both fluency and accuracy. To our knowledge, this is the first work to explore modularized pre-training methods for EToDs. |
doi_str_mv | 10.1109/TASLP.2023.3244503 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2806219407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10043710</ieee_id><sourcerecordid>2806219407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-3432e9eded5eb1337081de579d9d8deea1228c8591e6672e752dd5ab999b26643</originalsourceid><addsrcrecordid>eNpNkE1LAzEQQIMoWGr_gHhY8Jw6mWQ3m4tQav2AigXrOaTNtGytm5rsHvTXu7UVPM0c3puBx9ilgKEQYG7mo9fpbIiAcihRqRzkCeuhRMONBHX6t6OBczZIaQMAArQxWvXY7XPw7dbF6pt8NovEm-iquqrX2SrEbFJ73gROtc_mLr3zECuqm468q9w2rFu6YGcrt000OM4-e7ufzMePfPry8DQeTfkSTdFwqSSSIU8-p4WQUkMpPOXaeONLT-QEYrkscyOoKDSSztH73C2MMQssCiX77PpwdxfDZ0upsZvQxrp7abGEAoVRoDsKD9QyhpQirewuVh8uflkBdp_K_qay-1T2mKqTrg5SRUT_BFBSC5A_TWFjtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806219407</pqid></control><display><type>article</type><title>Modularized Pre-training for End-to-end Task-oriented Dialogue</title><source>IEEE Electronic Library (IEL)</source><creator>Qin, Libo ; Xu, Xiao ; Wang, Lehan ; Zhang, Yue ; Che, Wanxiang</creator><creatorcontrib>Qin, Libo ; Xu, Xiao ; Wang, Lehan ; Zhang, Yue ; Che, Wanxiang</creatorcontrib><description>Pre-training for e nd-to-end t ask- o riented d ialogue s ystems (EToDs) is a challenging task due to its unique knowledge base query (accuracy) need and lack of sufficient training data (fluency). In this paper, we try to mitigate the above challenges by introducing a modularized pre-training framework for EToDs, which achieves to effectively improve both accuracy and fluency of EToDs through a pre-training paradigm. The core insight is a modular design by decomposing EToDs into a generation (fluency) module and a knowledge-retriever (accuracy) module, which allows us to optimize each module by pre-training these two sub-modules with different well-designed pre-training tasks, respectively. In addition, such a modularized paradigm enables us to make full use of large amounts of KB-free dialogue corpus for the pre-training generation module, which can alleviate the insufficient training problem. Furthermore, we introduce a new consistency-guided data augmentation (CGDA) strategy to cope with the data scarcity problem to better pre-train the knowledge-retriever module. Finally, we fine-tune the pre-trained generation module and knowledge-retriever module jointly. Experimental results on three datasets show that our model achieve superior performance in terms of both fluency and accuracy. To our knowledge, this is the first work to explore modularized pre-training methods for EToDs.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2023.3244503</identifier><identifier>CODEN: ITASFA</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Automobiles ; consistency-guided data augmentation ; Data augmentation ; History ; Knowledge based systems ; Knowledge bases (artificial intelligence) ; Modular design ; Modularized Pre-training ; Modules ; Speech processing ; Task analysis ; Task-oriented Dialogue System ; Training ; Vehicles</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2023-01, Vol.31, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-3432e9eded5eb1337081de579d9d8deea1228c8591e6672e752dd5ab999b26643</citedby><cites>FETCH-LOGICAL-c296t-3432e9eded5eb1337081de579d9d8deea1228c8591e6672e752dd5ab999b26643</cites><orcidid>0000-0002-5214-2268 ; 0000-0002-3907-0335 ; 0000-0002-3619-675X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10043710$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10043710$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qin, Libo</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Wang, Lehan</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Che, Wanxiang</creatorcontrib><title>Modularized Pre-training for End-to-end Task-oriented Dialogue</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>Pre-training for e nd-to-end t ask- o riented d ialogue s ystems (EToDs) is a challenging task due to its unique knowledge base query (accuracy) need and lack of sufficient training data (fluency). In this paper, we try to mitigate the above challenges by introducing a modularized pre-training framework for EToDs, which achieves to effectively improve both accuracy and fluency of EToDs through a pre-training paradigm. The core insight is a modular design by decomposing EToDs into a generation (fluency) module and a knowledge-retriever (accuracy) module, which allows us to optimize each module by pre-training these two sub-modules with different well-designed pre-training tasks, respectively. In addition, such a modularized paradigm enables us to make full use of large amounts of KB-free dialogue corpus for the pre-training generation module, which can alleviate the insufficient training problem. Furthermore, we introduce a new consistency-guided data augmentation (CGDA) strategy to cope with the data scarcity problem to better pre-train the knowledge-retriever module. Finally, we fine-tune the pre-trained generation module and knowledge-retriever module jointly. Experimental results on three datasets show that our model achieve superior performance in terms of both fluency and accuracy. To our knowledge, this is the first work to explore modularized pre-training methods for EToDs.</description><subject>Accuracy</subject><subject>Automobiles</subject><subject>consistency-guided data augmentation</subject><subject>Data augmentation</subject><subject>History</subject><subject>Knowledge based systems</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Modular design</subject><subject>Modularized Pre-training</subject><subject>Modules</subject><subject>Speech processing</subject><subject>Task analysis</subject><subject>Task-oriented Dialogue System</subject><subject>Training</subject><subject>Vehicles</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQQIMoWGr_gHhY8Jw6mWQ3m4tQav2AigXrOaTNtGytm5rsHvTXu7UVPM0c3puBx9ilgKEQYG7mo9fpbIiAcihRqRzkCeuhRMONBHX6t6OBczZIaQMAArQxWvXY7XPw7dbF6pt8NovEm-iquqrX2SrEbFJ73gROtc_mLr3zECuqm468q9w2rFu6YGcrt000OM4-e7ufzMePfPry8DQeTfkSTdFwqSSSIU8-p4WQUkMpPOXaeONLT-QEYrkscyOoKDSSztH73C2MMQssCiX77PpwdxfDZ0upsZvQxrp7abGEAoVRoDsKD9QyhpQirewuVh8uflkBdp_K_qay-1T2mKqTrg5SRUT_BFBSC5A_TWFjtg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Qin, Libo</creator><creator>Xu, Xiao</creator><creator>Wang, Lehan</creator><creator>Zhang, Yue</creator><creator>Che, Wanxiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5214-2268</orcidid><orcidid>https://orcid.org/0000-0002-3907-0335</orcidid><orcidid>https://orcid.org/0000-0002-3619-675X</orcidid></search><sort><creationdate>20230101</creationdate><title>Modularized Pre-training for End-to-end Task-oriented Dialogue</title><author>Qin, Libo ; Xu, Xiao ; Wang, Lehan ; Zhang, Yue ; Che, Wanxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-3432e9eded5eb1337081de579d9d8deea1228c8591e6672e752dd5ab999b26643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Automobiles</topic><topic>consistency-guided data augmentation</topic><topic>Data augmentation</topic><topic>History</topic><topic>Knowledge based systems</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Modular design</topic><topic>Modularized Pre-training</topic><topic>Modules</topic><topic>Speech processing</topic><topic>Task analysis</topic><topic>Task-oriented Dialogue System</topic><topic>Training</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Libo</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Wang, Lehan</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Che, Wanxiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin, Libo</au><au>Xu, Xiao</au><au>Wang, Lehan</au><au>Zhang, Yue</au><au>Che, Wanxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modularized Pre-training for End-to-end Task-oriented Dialogue</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>31</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASFA</coden><abstract>Pre-training for e nd-to-end t ask- o riented d ialogue s ystems (EToDs) is a challenging task due to its unique knowledge base query (accuracy) need and lack of sufficient training data (fluency). In this paper, we try to mitigate the above challenges by introducing a modularized pre-training framework for EToDs, which achieves to effectively improve both accuracy and fluency of EToDs through a pre-training paradigm. The core insight is a modular design by decomposing EToDs into a generation (fluency) module and a knowledge-retriever (accuracy) module, which allows us to optimize each module by pre-training these two sub-modules with different well-designed pre-training tasks, respectively. In addition, such a modularized paradigm enables us to make full use of large amounts of KB-free dialogue corpus for the pre-training generation module, which can alleviate the insufficient training problem. Furthermore, we introduce a new consistency-guided data augmentation (CGDA) strategy to cope with the data scarcity problem to better pre-train the knowledge-retriever module. Finally, we fine-tune the pre-trained generation module and knowledge-retriever module jointly. Experimental results on three datasets show that our model achieve superior performance in terms of both fluency and accuracy. To our knowledge, this is the first work to explore modularized pre-training methods for EToDs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2023.3244503</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5214-2268</orcidid><orcidid>https://orcid.org/0000-0002-3907-0335</orcidid><orcidid>https://orcid.org/0000-0002-3619-675X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-9290 |
ispartof | IEEE/ACM transactions on audio, speech, and language processing, 2023-01, Vol.31, p.1-10 |
issn | 2329-9290 2329-9304 |
language | eng |
recordid | cdi_proquest_journals_2806219407 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Automobiles consistency-guided data augmentation Data augmentation History Knowledge based systems Knowledge bases (artificial intelligence) Modular design Modularized Pre-training Modules Speech processing Task analysis Task-oriented Dialogue System Training Vehicles |
title | Modularized Pre-training for End-to-end Task-oriented Dialogue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modularized%20Pre-training%20for%20End-to-end%20Task-oriented%20Dialogue&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Qin,%20Libo&rft.date=2023-01-01&rft.volume=31&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASFA&rft_id=info:doi/10.1109/TASLP.2023.3244503&rft_dat=%3Cproquest_RIE%3E2806219407%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806219407&rft_id=info:pmid/&rft_ieee_id=10043710&rfr_iscdi=true |