EEG spectral and connectivity parameters as cognitive biomarkers in Parkinson disease

Background Cognitive decline is a common presentation of Parkinson’s disease (PD) and a continued search exists for a reliable biomarker for early identification and management of this clinical problem. The objective of this study is to select the most useful biomarker in assessment of PD-related co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Egyptian Journal of Neurology, Psychiatry and Neurosurgery Psychiatry and Neurosurgery, 2023-04, Vol.59 (1), p.54-9, Article 54
Hauptverfasser: Elkholy, Mostafa M., Aboubakr, Hossam H., Abd ElMonem, Noha A., Soliman, Rasha H., Masoud, Mohammed M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 54
container_title The Egyptian Journal of Neurology, Psychiatry and Neurosurgery
container_volume 59
creator Elkholy, Mostafa M.
Aboubakr, Hossam H.
Abd ElMonem, Noha A.
Soliman, Rasha H.
Masoud, Mohammed M.
description Background Cognitive decline is a common presentation of Parkinson’s disease (PD) and a continued search exists for a reliable biomarker for early identification and management of this clinical problem. The objective of this study is to select the most useful biomarker in assessment of PD-related cognitive decline. This cross-sectional study included 47 patients with PD and 47 matched healthy controls. All participants were assessed by quantitative electroencephalography (QEEG) spectral (relative power and background peak frequency) and connectivity measures (coherence and phase lag degree), in addition to clinical evaluation using Unified Parkinson’s Disease Rating Scale (UPDRS)and Modified Hoehn and Yahr staging scale and neuropsychological assessment of the patients using Montreal Cognitive Assessment (MoCA). Results PD patients showed significantly higher relative power in all frequency bands over the right temporal region with no significant changes in peak frequency, coherence and phase lag degree compared to healthy controls. PD patients with impaired cognition (MoCA 
doi_str_mv 10.1186/s41983-023-00656-0
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2805772965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b3c8e58a860843479fbaf4b8611aed12</doaj_id><sourcerecordid>2805772965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-f89ce226d13b7d29ad784b391ed20908a2d7d13d63a5aab0d5c5c4fc73eda4c33</originalsourceid><addsrcrecordid>eNp9UUtLAzEQXkTBUvsHPC14Xs1jN4-jlFoLBT3Yc5hNsiW1TWqyFfrvTbuinjwMM5nvkYGvKG4xusdYsIdUYylohUguxBpWoYtihJnglaBEXv6Zr4tJSq5FNcEYcYlHxWo2m5dpb3UfYVuCN6UO3uen-3T9sdxDhJ3tbUwlpAytvcuILVsXdhDfT3vny9c8Op-CL41LFpK9Ka462CY7-e7jYvU0e5s-V8uX-WL6uKw0FaivOiG1JYQZTFtuiATDRd1Sia0hSCIBxPCMGUahAWiRaXSj605zag3UmtJxsRh8TYCN2keXjzqqAE6dFyGuFcTe6a1VLdXCNgIEQ6KmNZddC13dCoYxWINJ9robvPYxfBxs6tUmHKLP5ysiUMM5kazJLDKwdAwpRdv9_IqROqWhhjRUTkOd01Aoi-ggSpns1zb-Wv-j-gKtMY2c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805772965</pqid></control><display><type>article</type><title>EEG spectral and connectivity parameters as cognitive biomarkers in Parkinson disease</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Elkholy, Mostafa M. ; Aboubakr, Hossam H. ; Abd ElMonem, Noha A. ; Soliman, Rasha H. ; Masoud, Mohammed M.</creator><creatorcontrib>Elkholy, Mostafa M. ; Aboubakr, Hossam H. ; Abd ElMonem, Noha A. ; Soliman, Rasha H. ; Masoud, Mohammed M.</creatorcontrib><description>Background Cognitive decline is a common presentation of Parkinson’s disease (PD) and a continued search exists for a reliable biomarker for early identification and management of this clinical problem. The objective of this study is to select the most useful biomarker in assessment of PD-related cognitive decline. This cross-sectional study included 47 patients with PD and 47 matched healthy controls. All participants were assessed by quantitative electroencephalography (QEEG) spectral (relative power and background peak frequency) and connectivity measures (coherence and phase lag degree), in addition to clinical evaluation using Unified Parkinson’s Disease Rating Scale (UPDRS)and Modified Hoehn and Yahr staging scale and neuropsychological assessment of the patients using Montreal Cognitive Assessment (MoCA). Results PD patients showed significantly higher relative power in all frequency bands over the right temporal region with no significant changes in peak frequency, coherence and phase lag degree compared to healthy controls. PD patients with impaired cognition (MoCA &lt; 26) had significantly lower global relative power, more marked in alpha and beta frequency bands compared to PD patients with normal cognition. Alpha and beta relative power in frontal and temporal regions showed significant correlation with different cognitive domains of MoCA score. Conclusions QEEG measures especially spectral relative power could be used as adjunct to neuropsychological assessment in evaluation of PD-related cognitive decline.</description><identifier>ISSN: 1687-8329</identifier><identifier>ISSN: 1110-1083</identifier><identifier>EISSN: 1687-8329</identifier><identifier>DOI: 10.1186/s41983-023-00656-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomarkers ; Cognition &amp; reasoning ; Cognitive decline ; Connectivity analysis ; Medicine ; Medicine &amp; Public Health ; Neurology ; Neuropsychology ; Neurosurgery ; Parkinson's disease ; Psychiatry ; QEEG ; Spectral analysis</subject><ispartof>The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 2023-04, Vol.59 (1), p.54-9, Article 54</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c380t-f89ce226d13b7d29ad784b391ed20908a2d7d13d63a5aab0d5c5c4fc73eda4c33</cites><orcidid>0000-0002-4954-5883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Elkholy, Mostafa M.</creatorcontrib><creatorcontrib>Aboubakr, Hossam H.</creatorcontrib><creatorcontrib>Abd ElMonem, Noha A.</creatorcontrib><creatorcontrib>Soliman, Rasha H.</creatorcontrib><creatorcontrib>Masoud, Mohammed M.</creatorcontrib><title>EEG spectral and connectivity parameters as cognitive biomarkers in Parkinson disease</title><title>The Egyptian Journal of Neurology, Psychiatry and Neurosurgery</title><addtitle>Egypt J Neurol Psychiatry Neurosurg</addtitle><description>Background Cognitive decline is a common presentation of Parkinson’s disease (PD) and a continued search exists for a reliable biomarker for early identification and management of this clinical problem. The objective of this study is to select the most useful biomarker in assessment of PD-related cognitive decline. This cross-sectional study included 47 patients with PD and 47 matched healthy controls. All participants were assessed by quantitative electroencephalography (QEEG) spectral (relative power and background peak frequency) and connectivity measures (coherence and phase lag degree), in addition to clinical evaluation using Unified Parkinson’s Disease Rating Scale (UPDRS)and Modified Hoehn and Yahr staging scale and neuropsychological assessment of the patients using Montreal Cognitive Assessment (MoCA). Results PD patients showed significantly higher relative power in all frequency bands over the right temporal region with no significant changes in peak frequency, coherence and phase lag degree compared to healthy controls. PD patients with impaired cognition (MoCA &lt; 26) had significantly lower global relative power, more marked in alpha and beta frequency bands compared to PD patients with normal cognition. Alpha and beta relative power in frontal and temporal regions showed significant correlation with different cognitive domains of MoCA score. Conclusions QEEG measures especially spectral relative power could be used as adjunct to neuropsychological assessment in evaluation of PD-related cognitive decline.</description><subject>Biomarkers</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive decline</subject><subject>Connectivity analysis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neurology</subject><subject>Neuropsychology</subject><subject>Neurosurgery</subject><subject>Parkinson's disease</subject><subject>Psychiatry</subject><subject>QEEG</subject><subject>Spectral analysis</subject><issn>1687-8329</issn><issn>1110-1083</issn><issn>1687-8329</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9UUtLAzEQXkTBUvsHPC14Xs1jN4-jlFoLBT3Yc5hNsiW1TWqyFfrvTbuinjwMM5nvkYGvKG4xusdYsIdUYylohUguxBpWoYtihJnglaBEXv6Zr4tJSq5FNcEYcYlHxWo2m5dpb3UfYVuCN6UO3uen-3T9sdxDhJ3tbUwlpAytvcuILVsXdhDfT3vny9c8Op-CL41LFpK9Ka462CY7-e7jYvU0e5s-V8uX-WL6uKw0FaivOiG1JYQZTFtuiATDRd1Sia0hSCIBxPCMGUahAWiRaXSj605zag3UmtJxsRh8TYCN2keXjzqqAE6dFyGuFcTe6a1VLdXCNgIEQ6KmNZddC13dCoYxWINJ9robvPYxfBxs6tUmHKLP5ysiUMM5kazJLDKwdAwpRdv9_IqROqWhhjRUTkOd01Aoi-ggSpns1zb-Wv-j-gKtMY2c</recordid><startdate>20230425</startdate><enddate>20230425</enddate><creator>Elkholy, Mostafa M.</creator><creator>Aboubakr, Hossam H.</creator><creator>Abd ElMonem, Noha A.</creator><creator>Soliman, Rasha H.</creator><creator>Masoud, Mohammed M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4954-5883</orcidid></search><sort><creationdate>20230425</creationdate><title>EEG spectral and connectivity parameters as cognitive biomarkers in Parkinson disease</title><author>Elkholy, Mostafa M. ; Aboubakr, Hossam H. ; Abd ElMonem, Noha A. ; Soliman, Rasha H. ; Masoud, Mohammed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-f89ce226d13b7d29ad784b391ed20908a2d7d13d63a5aab0d5c5c4fc73eda4c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive decline</topic><topic>Connectivity analysis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neurology</topic><topic>Neuropsychology</topic><topic>Neurosurgery</topic><topic>Parkinson's disease</topic><topic>Psychiatry</topic><topic>QEEG</topic><topic>Spectral analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elkholy, Mostafa M.</creatorcontrib><creatorcontrib>Aboubakr, Hossam H.</creatorcontrib><creatorcontrib>Abd ElMonem, Noha A.</creatorcontrib><creatorcontrib>Soliman, Rasha H.</creatorcontrib><creatorcontrib>Masoud, Mohammed M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Psychology Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Egyptian Journal of Neurology, Psychiatry and Neurosurgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elkholy, Mostafa M.</au><au>Aboubakr, Hossam H.</au><au>Abd ElMonem, Noha A.</au><au>Soliman, Rasha H.</au><au>Masoud, Mohammed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EEG spectral and connectivity parameters as cognitive biomarkers in Parkinson disease</atitle><jtitle>The Egyptian Journal of Neurology, Psychiatry and Neurosurgery</jtitle><stitle>Egypt J Neurol Psychiatry Neurosurg</stitle><date>2023-04-25</date><risdate>2023</risdate><volume>59</volume><issue>1</issue><spage>54</spage><epage>9</epage><pages>54-9</pages><artnum>54</artnum><issn>1687-8329</issn><issn>1110-1083</issn><eissn>1687-8329</eissn><abstract>Background Cognitive decline is a common presentation of Parkinson’s disease (PD) and a continued search exists for a reliable biomarker for early identification and management of this clinical problem. The objective of this study is to select the most useful biomarker in assessment of PD-related cognitive decline. This cross-sectional study included 47 patients with PD and 47 matched healthy controls. All participants were assessed by quantitative electroencephalography (QEEG) spectral (relative power and background peak frequency) and connectivity measures (coherence and phase lag degree), in addition to clinical evaluation using Unified Parkinson’s Disease Rating Scale (UPDRS)and Modified Hoehn and Yahr staging scale and neuropsychological assessment of the patients using Montreal Cognitive Assessment (MoCA). Results PD patients showed significantly higher relative power in all frequency bands over the right temporal region with no significant changes in peak frequency, coherence and phase lag degree compared to healthy controls. PD patients with impaired cognition (MoCA &lt; 26) had significantly lower global relative power, more marked in alpha and beta frequency bands compared to PD patients with normal cognition. Alpha and beta relative power in frontal and temporal regions showed significant correlation with different cognitive domains of MoCA score. Conclusions QEEG measures especially spectral relative power could be used as adjunct to neuropsychological assessment in evaluation of PD-related cognitive decline.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1186/s41983-023-00656-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4954-5883</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8329
ispartof The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 2023-04, Vol.59 (1), p.54-9, Article 54
issn 1687-8329
1110-1083
1687-8329
language eng
recordid cdi_proquest_journals_2805772965
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals
subjects Biomarkers
Cognition & reasoning
Cognitive decline
Connectivity analysis
Medicine
Medicine & Public Health
Neurology
Neuropsychology
Neurosurgery
Parkinson's disease
Psychiatry
QEEG
Spectral analysis
title EEG spectral and connectivity parameters as cognitive biomarkers in Parkinson disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EEG%20spectral%20and%20connectivity%20parameters%20as%20cognitive%20biomarkers%20in%20Parkinson%20disease&rft.jtitle=The%20Egyptian%20Journal%20of%20Neurology,%20Psychiatry%20and%20Neurosurgery&rft.au=Elkholy,%20Mostafa%20M.&rft.date=2023-04-25&rft.volume=59&rft.issue=1&rft.spage=54&rft.epage=9&rft.pages=54-9&rft.artnum=54&rft.issn=1687-8329&rft.eissn=1687-8329&rft_id=info:doi/10.1186/s41983-023-00656-0&rft_dat=%3Cproquest_doaj_%3E2805772965%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805772965&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_b3c8e58a860843479fbaf4b8611aed12&rfr_iscdi=true