Distributed Phase Estimation Algorithm and Distributed Shor's Algorithm
Shor's algorithm is one of the most significant quantum algorithms. Shor's algorithm can factor large integers with a certain success probability in polynomial time. However, Shor's algorithm requires an unbearable amount of qubits in the NISQ (Noisy Intermediate-scale Quantum) era. T...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xiao, Ligang Qiu, Daowen Luo, Le Mateus, Paulo |
description | Shor's algorithm is one of the most significant quantum algorithms. Shor's algorithm can factor large integers with a certain success probability in polynomial time. However, Shor's algorithm requires an unbearable amount of qubits in the NISQ (Noisy Intermediate-scale Quantum) era. To reduce the resources required for Shor's algorithm, in this paper we first propose a new distributed phase estimation algorithm. Our distributed phase estimation algorithm does not require quantum communication and it reduces the number of qubits of a single node compared to the traditional phase estimation algorithm (non-iterative version). Then we apply our distributed phase estimation algorithm to form a distributed order-finding algorithm for Shor's algorithm. Compared with the traditional Shor's algorithm (non-iterative version), the maximum number of qubits required by a single node of our dristributed order-finding algorithm is reduced by \((2-\dfrac{2}{k})L-\log_2k-O(1)\) when factoring an \(L\)-bit integer (\(k\) is the number of compute nodes). The communication complexity of our distributed order-finding algorithm is \(O(kL)\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2805743735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805743735</sourcerecordid><originalsourceid>FETCH-proquest_journals_28057437353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwd8ksLinKTCotSU1RCMhILE5VcC0uycxNLMnMz1NwzEnPL8osychVSMxLUUBWGpyRX6RejFDAw8CalphTnMoLpbkZlN1cQ5w9dAuK8gtLU4tL4rPyS4vygFLxRhYGpuYmxubGpsbEqQIAGDA7zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805743735</pqid></control><display><type>article</type><title>Distributed Phase Estimation Algorithm and Distributed Shor's Algorithm</title><source>Free E- Journals</source><creator>Xiao, Ligang ; Qiu, Daowen ; Luo, Le ; Mateus, Paulo</creator><creatorcontrib>Xiao, Ligang ; Qiu, Daowen ; Luo, Le ; Mateus, Paulo</creatorcontrib><description>Shor's algorithm is one of the most significant quantum algorithms. Shor's algorithm can factor large integers with a certain success probability in polynomial time. However, Shor's algorithm requires an unbearable amount of qubits in the NISQ (Noisy Intermediate-scale Quantum) era. To reduce the resources required for Shor's algorithm, in this paper we first propose a new distributed phase estimation algorithm. Our distributed phase estimation algorithm does not require quantum communication and it reduces the number of qubits of a single node compared to the traditional phase estimation algorithm (non-iterative version). Then we apply our distributed phase estimation algorithm to form a distributed order-finding algorithm for Shor's algorithm. Compared with the traditional Shor's algorithm (non-iterative version), the maximum number of qubits required by a single node of our dristributed order-finding algorithm is reduced by \((2-\dfrac{2}{k})L-\log_2k-O(1)\) when factoring an \(L\)-bit integer (\(k\) is the number of compute nodes). The communication complexity of our distributed order-finding algorithm is \(O(kL)\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Circuits ; Complexity ; Polynomials ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Xiao, Ligang</creatorcontrib><creatorcontrib>Qiu, Daowen</creatorcontrib><creatorcontrib>Luo, Le</creatorcontrib><creatorcontrib>Mateus, Paulo</creatorcontrib><title>Distributed Phase Estimation Algorithm and Distributed Shor's Algorithm</title><title>arXiv.org</title><description>Shor's algorithm is one of the most significant quantum algorithms. Shor's algorithm can factor large integers with a certain success probability in polynomial time. However, Shor's algorithm requires an unbearable amount of qubits in the NISQ (Noisy Intermediate-scale Quantum) era. To reduce the resources required for Shor's algorithm, in this paper we first propose a new distributed phase estimation algorithm. Our distributed phase estimation algorithm does not require quantum communication and it reduces the number of qubits of a single node compared to the traditional phase estimation algorithm (non-iterative version). Then we apply our distributed phase estimation algorithm to form a distributed order-finding algorithm for Shor's algorithm. Compared with the traditional Shor's algorithm (non-iterative version), the maximum number of qubits required by a single node of our dristributed order-finding algorithm is reduced by \((2-\dfrac{2}{k})L-\log_2k-O(1)\) when factoring an \(L\)-bit integer (\(k\) is the number of compute nodes). The communication complexity of our distributed order-finding algorithm is \(O(kL)\).</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Complexity</subject><subject>Polynomials</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwd8ksLinKTCotSU1RCMhILE5VcC0uycxNLMnMz1NwzEnPL8osychVSMxLUUBWGpyRX6RejFDAw8CalphTnMoLpbkZlN1cQ5w9dAuK8gtLU4tL4rPyS4vygFLxRhYGpuYmxubGpsbEqQIAGDA7zw</recordid><startdate>20241213</startdate><enddate>20241213</enddate><creator>Xiao, Ligang</creator><creator>Qiu, Daowen</creator><creator>Luo, Le</creator><creator>Mateus, Paulo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241213</creationdate><title>Distributed Phase Estimation Algorithm and Distributed Shor's Algorithm</title><author>Xiao, Ligang ; Qiu, Daowen ; Luo, Le ; Mateus, Paulo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28057437353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Complexity</topic><topic>Polynomials</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Ligang</creatorcontrib><creatorcontrib>Qiu, Daowen</creatorcontrib><creatorcontrib>Luo, Le</creatorcontrib><creatorcontrib>Mateus, Paulo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Ligang</au><au>Qiu, Daowen</au><au>Luo, Le</au><au>Mateus, Paulo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Distributed Phase Estimation Algorithm and Distributed Shor's Algorithm</atitle><jtitle>arXiv.org</jtitle><date>2024-12-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Shor's algorithm is one of the most significant quantum algorithms. Shor's algorithm can factor large integers with a certain success probability in polynomial time. However, Shor's algorithm requires an unbearable amount of qubits in the NISQ (Noisy Intermediate-scale Quantum) era. To reduce the resources required for Shor's algorithm, in this paper we first propose a new distributed phase estimation algorithm. Our distributed phase estimation algorithm does not require quantum communication and it reduces the number of qubits of a single node compared to the traditional phase estimation algorithm (non-iterative version). Then we apply our distributed phase estimation algorithm to form a distributed order-finding algorithm for Shor's algorithm. Compared with the traditional Shor's algorithm (non-iterative version), the maximum number of qubits required by a single node of our dristributed order-finding algorithm is reduced by \((2-\dfrac{2}{k})L-\log_2k-O(1)\) when factoring an \(L\)-bit integer (\(k\) is the number of compute nodes). The communication complexity of our distributed order-finding algorithm is \(O(kL)\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2805743735 |
source | Free E- Journals |
subjects | Algorithms Circuits Complexity Polynomials Qubits (quantum computing) |
title | Distributed Phase Estimation Algorithm and Distributed Shor's Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Distributed%20Phase%20Estimation%20Algorithm%20and%20Distributed%20Shor's%20Algorithm&rft.jtitle=arXiv.org&rft.au=Xiao,%20Ligang&rft.date=2024-12-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2805743735%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805743735&rft_id=info:pmid/&rfr_iscdi=true |