The compositional diversity and temporal evolution of an active andesitic arc stratovolcano: Tongariro, Taupō Volcanic Zone, New Zealand

New geochemical data, including Sr–Nd–Pb isotopes for whole-rock and groundmass samples, are reported for edifice-forming eruptives at Tongariro volcano, New Zealand, which span its ~ 350 ka to late Holocene history. Tongariro eruptives are medium-K basaltic-andesites to dacites (53.0–66.2 wt% SiO 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2023-05, Vol.178 (5), p.30, Article 30
Hauptverfasser: Pure, Leo R., Wilson, Colin J. N., Charlier, Bruce L. A., Gamble, John A., Townsend, Dougal B., Leonard, Graham S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 30
container_title Contributions to mineralogy and petrology
container_volume 178
creator Pure, Leo R.
Wilson, Colin J. N.
Charlier, Bruce L. A.
Gamble, John A.
Townsend, Dougal B.
Leonard, Graham S.
description New geochemical data, including Sr–Nd–Pb isotopes for whole-rock and groundmass samples, are reported for edifice-forming eruptives at Tongariro volcano, New Zealand, which span its ~ 350 ka to late Holocene history. Tongariro eruptives are medium-K basaltic-andesites to dacites (53.0–66.2 wt% SiO 2 ) that evolved via assimilation-fractional crystallisation (AFC) processes partly or mostly in the uppermost 15 km of the crust. When ordered chronologically using a high-resolution 40 Ar/ 39 Ar-dated eruptive stratigraphy, the compositional data show systematic 10–130 kyr cycles. Mafic replenishment events inferred from MgO values occurred at ~ 230, ~ 151, ~ 88 and ~ 56 ka and in the late Holocene, with high-MgO flank vents erupting at ~ 160, ~ 117, ~ 35 and ~ 17.5 ka. Cycles in Sm/Nd, 87 Sr/ 86 Sr, 143 Nd/ 144 Nd and Pb isotopic ratios, which are decoupled from MgO, K 2 O and Rb/Sr cycles, indicate periods of prolonged crustal residence of magmas from ~ 230 to ~ 100 ka and ~ 95 to ~ 30 ka. AFC modelling shows that intermediate and silicic melt compositions, with r-values between 0.1 and 1, are needed to reproduce Tongariro compositional arrays. AFC models also indicate that ~ 20% of the average Tongariro magma comprises assimilated (meta)sedimentary basement material. Locally, Tongariro and adjacent Ruapehu volcanoes attain their most crust-like 87 Sr/ 86 Sr and 143 Nd/ 144 Nd compositions at ~ 100 and ~ 30 ka, paralleling with zircon model-age crystallisation modes at the rhyolitic Taupō volcano ~ 50 km to the NNE. These coincidences suggest that the timing and tempo of magma assembly processes at all three volcanoes were contemporaneous and may have been tectonically influenced since at least 200 ka.
doi_str_mv 10.1007/s00410-023-02004-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2805738813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805738813</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-f3e7d360c7847e453fd690b7d0e4f26094cebfca3e77ef7c11b5bed7d1c531963</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaW2DYwjpM4YYcq_qQKNoFFN5brTEqqNi52WtQjsOBY3Itpi8SOhWWP3_eeNI-xcwGXAkBdBYBEQASxpEPvCA5YTyQyjqDI1CHrAZCsiqI4ZichzIDmvEh77LN8Q27dYulC0zWuNXNeNWv0NG24aSveIWmevnHt5qstwl1NCje2I3DL4NZqufGWh86bzhFpTeuueenaqfGNdwNemtXy-4u_7iSix67FAX_CDz5GM6eUU3ZUm3nAs9-7z17ubsvhQzR6vn8c3owiI_Osi2qJqpIZWJUnCpNU1lVWwERVgEkdZ1AkFie1NYQprJUVYpJOsFKVsKkURSb77GKfu_TufYWh0zO38rR40HEOqZJ5LiRR8Z6y3oXgsdZL3yyM32gBelu53leuqXK9q1wDmeTeFAhup-j_ov9x_QDFa4ce</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805738813</pqid></control><display><type>article</type><title>The compositional diversity and temporal evolution of an active andesitic arc stratovolcano: Tongariro, Taupō Volcanic Zone, New Zealand</title><source>Springer Nature - Complete Springer Journals</source><creator>Pure, Leo R. ; Wilson, Colin J. N. ; Charlier, Bruce L. A. ; Gamble, John A. ; Townsend, Dougal B. ; Leonard, Graham S.</creator><creatorcontrib>Pure, Leo R. ; Wilson, Colin J. N. ; Charlier, Bruce L. A. ; Gamble, John A. ; Townsend, Dougal B. ; Leonard, Graham S.</creatorcontrib><description>New geochemical data, including Sr–Nd–Pb isotopes for whole-rock and groundmass samples, are reported for edifice-forming eruptives at Tongariro volcano, New Zealand, which span its ~ 350 ka to late Holocene history. Tongariro eruptives are medium-K basaltic-andesites to dacites (53.0–66.2 wt% SiO 2 ) that evolved via assimilation-fractional crystallisation (AFC) processes partly or mostly in the uppermost 15 km of the crust. When ordered chronologically using a high-resolution 40 Ar/ 39 Ar-dated eruptive stratigraphy, the compositional data show systematic 10–130 kyr cycles. Mafic replenishment events inferred from MgO values occurred at ~ 230, ~ 151, ~ 88 and ~ 56 ka and in the late Holocene, with high-MgO flank vents erupting at ~ 160, ~ 117, ~ 35 and ~ 17.5 ka. Cycles in Sm/Nd, 87 Sr/ 86 Sr, 143 Nd/ 144 Nd and Pb isotopic ratios, which are decoupled from MgO, K 2 O and Rb/Sr cycles, indicate periods of prolonged crustal residence of magmas from ~ 230 to ~ 100 ka and ~ 95 to ~ 30 ka. AFC modelling shows that intermediate and silicic melt compositions, with r-values between 0.1 and 1, are needed to reproduce Tongariro compositional arrays. AFC models also indicate that ~ 20% of the average Tongariro magma comprises assimilated (meta)sedimentary basement material. Locally, Tongariro and adjacent Ruapehu volcanoes attain their most crust-like 87 Sr/ 86 Sr and 143 Nd/ 144 Nd compositions at ~ 100 and ~ 30 ka, paralleling with zircon model-age crystallisation modes at the rhyolitic Taupō volcano ~ 50 km to the NNE. These coincidences suggest that the timing and tempo of magma assembly processes at all three volcanoes were contemporaneous and may have been tectonically influenced since at least 200 ka.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-023-02004-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Composition ; Cycles ; Earth and Environmental Science ; Earth Sciences ; Evolution ; Fractional crystallization ; Geology ; Holocene ; Isotope ratios ; Isotopes ; Lava ; Magma ; Magnesium oxide ; Mineral Resources ; Mineralogy ; Neodymium isotopes ; Original Paper ; Petrology ; Replenishment ; Silica ; Silicon dioxide ; Stratigraphy ; Strontium 87 ; Strontium isotopes ; Volcanic activity ; Volcanoes ; Zircon</subject><ispartof>Contributions to mineralogy and petrology, 2023-05, Vol.178 (5), p.30, Article 30</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-f3e7d360c7847e453fd690b7d0e4f26094cebfca3e77ef7c11b5bed7d1c531963</citedby><cites>FETCH-LOGICAL-a386t-f3e7d360c7847e453fd690b7d0e4f26094cebfca3e77ef7c11b5bed7d1c531963</cites><orcidid>0000-0002-5471-3319 ; 0000-0003-0285-8978 ; 0000-0002-4859-0180 ; 0000-0001-7565-0743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-023-02004-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-023-02004-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pure, Leo R.</creatorcontrib><creatorcontrib>Wilson, Colin J. N.</creatorcontrib><creatorcontrib>Charlier, Bruce L. A.</creatorcontrib><creatorcontrib>Gamble, John A.</creatorcontrib><creatorcontrib>Townsend, Dougal B.</creatorcontrib><creatorcontrib>Leonard, Graham S.</creatorcontrib><title>The compositional diversity and temporal evolution of an active andesitic arc stratovolcano: Tongariro, Taupō Volcanic Zone, New Zealand</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>New geochemical data, including Sr–Nd–Pb isotopes for whole-rock and groundmass samples, are reported for edifice-forming eruptives at Tongariro volcano, New Zealand, which span its ~ 350 ka to late Holocene history. Tongariro eruptives are medium-K basaltic-andesites to dacites (53.0–66.2 wt% SiO 2 ) that evolved via assimilation-fractional crystallisation (AFC) processes partly or mostly in the uppermost 15 km of the crust. When ordered chronologically using a high-resolution 40 Ar/ 39 Ar-dated eruptive stratigraphy, the compositional data show systematic 10–130 kyr cycles. Mafic replenishment events inferred from MgO values occurred at ~ 230, ~ 151, ~ 88 and ~ 56 ka and in the late Holocene, with high-MgO flank vents erupting at ~ 160, ~ 117, ~ 35 and ~ 17.5 ka. Cycles in Sm/Nd, 87 Sr/ 86 Sr, 143 Nd/ 144 Nd and Pb isotopic ratios, which are decoupled from MgO, K 2 O and Rb/Sr cycles, indicate periods of prolonged crustal residence of magmas from ~ 230 to ~ 100 ka and ~ 95 to ~ 30 ka. AFC modelling shows that intermediate and silicic melt compositions, with r-values between 0.1 and 1, are needed to reproduce Tongariro compositional arrays. AFC models also indicate that ~ 20% of the average Tongariro magma comprises assimilated (meta)sedimentary basement material. Locally, Tongariro and adjacent Ruapehu volcanoes attain their most crust-like 87 Sr/ 86 Sr and 143 Nd/ 144 Nd compositions at ~ 100 and ~ 30 ka, paralleling with zircon model-age crystallisation modes at the rhyolitic Taupō volcano ~ 50 km to the NNE. These coincidences suggest that the timing and tempo of magma assembly processes at all three volcanoes were contemporaneous and may have been tectonically influenced since at least 200 ka.</description><subject>Composition</subject><subject>Cycles</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Evolution</subject><subject>Fractional crystallization</subject><subject>Geology</subject><subject>Holocene</subject><subject>Isotope ratios</subject><subject>Isotopes</subject><subject>Lava</subject><subject>Magma</subject><subject>Magnesium oxide</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Neodymium isotopes</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Replenishment</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Stratigraphy</subject><subject>Strontium 87</subject><subject>Strontium isotopes</subject><subject>Volcanic activity</subject><subject>Volcanoes</subject><subject>Zircon</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1OwzAQhS0EEqVwAVaW2DYwjpM4YYcq_qQKNoFFN5brTEqqNi52WtQjsOBY3Itpi8SOhWWP3_eeNI-xcwGXAkBdBYBEQASxpEPvCA5YTyQyjqDI1CHrAZCsiqI4ZichzIDmvEh77LN8Q27dYulC0zWuNXNeNWv0NG24aSveIWmevnHt5qstwl1NCje2I3DL4NZqufGWh86bzhFpTeuueenaqfGNdwNemtXy-4u_7iSix67FAX_CDz5GM6eUU3ZUm3nAs9-7z17ubsvhQzR6vn8c3owiI_Osi2qJqpIZWJUnCpNU1lVWwERVgEkdZ1AkFie1NYQprJUVYpJOsFKVsKkURSb77GKfu_TufYWh0zO38rR40HEOqZJ5LiRR8Z6y3oXgsdZL3yyM32gBelu53leuqXK9q1wDmeTeFAhup-j_ov9x_QDFa4ce</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Pure, Leo R.</creator><creator>Wilson, Colin J. N.</creator><creator>Charlier, Bruce L. A.</creator><creator>Gamble, John A.</creator><creator>Townsend, Dougal B.</creator><creator>Leonard, Graham S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><orcidid>https://orcid.org/0000-0002-5471-3319</orcidid><orcidid>https://orcid.org/0000-0003-0285-8978</orcidid><orcidid>https://orcid.org/0000-0002-4859-0180</orcidid><orcidid>https://orcid.org/0000-0001-7565-0743</orcidid></search><sort><creationdate>20230501</creationdate><title>The compositional diversity and temporal evolution of an active andesitic arc stratovolcano: Tongariro, Taupō Volcanic Zone, New Zealand</title><author>Pure, Leo R. ; Wilson, Colin J. N. ; Charlier, Bruce L. A. ; Gamble, John A. ; Townsend, Dougal B. ; Leonard, Graham S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-f3e7d360c7847e453fd690b7d0e4f26094cebfca3e77ef7c11b5bed7d1c531963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composition</topic><topic>Cycles</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Evolution</topic><topic>Fractional crystallization</topic><topic>Geology</topic><topic>Holocene</topic><topic>Isotope ratios</topic><topic>Isotopes</topic><topic>Lava</topic><topic>Magma</topic><topic>Magnesium oxide</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Neodymium isotopes</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Replenishment</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Stratigraphy</topic><topic>Strontium 87</topic><topic>Strontium isotopes</topic><topic>Volcanic activity</topic><topic>Volcanoes</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pure, Leo R.</creatorcontrib><creatorcontrib>Wilson, Colin J. N.</creatorcontrib><creatorcontrib>Charlier, Bruce L. A.</creatorcontrib><creatorcontrib>Gamble, John A.</creatorcontrib><creatorcontrib>Townsend, Dougal B.</creatorcontrib><creatorcontrib>Leonard, Graham S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pure, Leo R.</au><au>Wilson, Colin J. N.</au><au>Charlier, Bruce L. A.</au><au>Gamble, John A.</au><au>Townsend, Dougal B.</au><au>Leonard, Graham S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The compositional diversity and temporal evolution of an active andesitic arc stratovolcano: Tongariro, Taupō Volcanic Zone, New Zealand</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>178</volume><issue>5</issue><spage>30</spage><pages>30-</pages><artnum>30</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><abstract>New geochemical data, including Sr–Nd–Pb isotopes for whole-rock and groundmass samples, are reported for edifice-forming eruptives at Tongariro volcano, New Zealand, which span its ~ 350 ka to late Holocene history. Tongariro eruptives are medium-K basaltic-andesites to dacites (53.0–66.2 wt% SiO 2 ) that evolved via assimilation-fractional crystallisation (AFC) processes partly or mostly in the uppermost 15 km of the crust. When ordered chronologically using a high-resolution 40 Ar/ 39 Ar-dated eruptive stratigraphy, the compositional data show systematic 10–130 kyr cycles. Mafic replenishment events inferred from MgO values occurred at ~ 230, ~ 151, ~ 88 and ~ 56 ka and in the late Holocene, with high-MgO flank vents erupting at ~ 160, ~ 117, ~ 35 and ~ 17.5 ka. Cycles in Sm/Nd, 87 Sr/ 86 Sr, 143 Nd/ 144 Nd and Pb isotopic ratios, which are decoupled from MgO, K 2 O and Rb/Sr cycles, indicate periods of prolonged crustal residence of magmas from ~ 230 to ~ 100 ka and ~ 95 to ~ 30 ka. AFC modelling shows that intermediate and silicic melt compositions, with r-values between 0.1 and 1, are needed to reproduce Tongariro compositional arrays. AFC models also indicate that ~ 20% of the average Tongariro magma comprises assimilated (meta)sedimentary basement material. Locally, Tongariro and adjacent Ruapehu volcanoes attain their most crust-like 87 Sr/ 86 Sr and 143 Nd/ 144 Nd compositions at ~ 100 and ~ 30 ka, paralleling with zircon model-age crystallisation modes at the rhyolitic Taupō volcano ~ 50 km to the NNE. These coincidences suggest that the timing and tempo of magma assembly processes at all three volcanoes were contemporaneous and may have been tectonically influenced since at least 200 ka.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-023-02004-0</doi><orcidid>https://orcid.org/0000-0002-5471-3319</orcidid><orcidid>https://orcid.org/0000-0003-0285-8978</orcidid><orcidid>https://orcid.org/0000-0002-4859-0180</orcidid><orcidid>https://orcid.org/0000-0001-7565-0743</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to mineralogy and petrology, 2023-05, Vol.178 (5), p.30, Article 30
issn 0010-7999
1432-0967
language eng
recordid cdi_proquest_journals_2805738813
source Springer Nature - Complete Springer Journals
subjects Composition
Cycles
Earth and Environmental Science
Earth Sciences
Evolution
Fractional crystallization
Geology
Holocene
Isotope ratios
Isotopes
Lava
Magma
Magnesium oxide
Mineral Resources
Mineralogy
Neodymium isotopes
Original Paper
Petrology
Replenishment
Silica
Silicon dioxide
Stratigraphy
Strontium 87
Strontium isotopes
Volcanic activity
Volcanoes
Zircon
title The compositional diversity and temporal evolution of an active andesitic arc stratovolcano: Tongariro, Taupō Volcanic Zone, New Zealand
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20compositional%20diversity%20and%20temporal%20evolution%20of%20an%20active%20andesitic%20arc%20stratovolcano:%20Tongariro,%20Taup%C5%8D%20Volcanic%20Zone,%20New%20Zealand&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Pure,%20Leo%20R.&rft.date=2023-05-01&rft.volume=178&rft.issue=5&rft.spage=30&rft.pages=30-&rft.artnum=30&rft.issn=0010-7999&rft.eissn=1432-0967&rft_id=info:doi/10.1007/s00410-023-02004-0&rft_dat=%3Cproquest_cross%3E2805738813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805738813&rft_id=info:pmid/&rfr_iscdi=true