Deep learning model for the estimation of Rheumatoid arthritis in hand radiographs

Rheumatoid Arthritis (RA) is an autoimmune illness that affects the hands and feet’s joints. The detection of RA is done using the scoring of radiographs and is a difficult task that requires trained clinicians. An automated system for diagnosing RA will eventually help physicians in better patient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ahalya, R. K., Snekhalatha, U.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2603
creator Ahalya, R. K.
Snekhalatha, U.
description Rheumatoid Arthritis (RA) is an autoimmune illness that affects the hands and feet’s joints. The detection of RA is done using the scoring of radiographs and is a difficult task that requires trained clinicians. An automated system for diagnosing RA will eventually help physicians in better patient care and early detection. The study aims to implement an automated tool for the evaluation of RA disease. One hundred hand radiographs of RA and 100 normal hand radiographs were acquired for the study. ResNet50 and SqueezeNet models using the transfer learning approaches are used in this work. The accuracy obtained by the ResNet50 model is 89.8% and the SqueeNet model is 77.5% for the assessment of RA disease.
doi_str_mv 10.1063/5.0126373
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2805638496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805638496</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-c8653d256614be0deb331a342e639d7695d019334b4ca367b6f3c3ef06eedf083</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv0HAm7A12dnM7h6l_oWCUBS8hewm6aa0mzVJBb-9qy148zQ8-M28eY-QS85mnCHciBnjOUIJR2TCheBZiRyPyYSxusjyAt5PyVmMa8byuiyrCVneGTPQjVGhd_2Kbr02G2p9oKkz1MTktio531Nv6bIzu1F5p6kKqQsuuUhdTzvVaxqUdn4V1NDFc3Ji1Saai8OckreH-9f5U7Z4eXye3y6ygWOVsrZCAToXiLxoDNOmAeAKitwg1LrEWmjGa4CiKVoFWDZooQVjGRqjLatgSq72d4fgP3bjr3Ltd6EfLWVeMYFQFTWO1PWeiq1Lv1nkEMZU4Ut--iCFPPQlB23_gzmTPwX_LcA3NDJsvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2805638496</pqid></control><display><type>conference_proceeding</type><title>Deep learning model for the estimation of Rheumatoid arthritis in hand radiographs</title><source>AIP Journals Complete</source><creator>Ahalya, R. K. ; Snekhalatha, U.</creator><contributor>Umapathy, Snekhalatha ; Kathirvelu, D ; Karthik, Varshini ; Damodaran, Vani ; Kirubha, S P Angeline</contributor><creatorcontrib>Ahalya, R. K. ; Snekhalatha, U. ; Umapathy, Snekhalatha ; Kathirvelu, D ; Karthik, Varshini ; Damodaran, Vani ; Kirubha, S P Angeline</creatorcontrib><description>Rheumatoid Arthritis (RA) is an autoimmune illness that affects the hands and feet’s joints. The detection of RA is done using the scoring of radiographs and is a difficult task that requires trained clinicians. An automated system for diagnosing RA will eventually help physicians in better patient care and early detection. The study aims to implement an automated tool for the evaluation of RA disease. One hundred hand radiographs of RA and 100 normal hand radiographs were acquired for the study. ResNet50 and SqueezeNet models using the transfer learning approaches are used in this work. The accuracy obtained by the ResNet50 model is 89.8% and the SqueeNet model is 77.5% for the assessment of RA disease.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0126373</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Arthritis ; Deep learning ; Radiographs</subject><ispartof>AIP conference proceedings, 2023, Vol.2603 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0126373$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4499,23912,23913,25122,27906,27907,76134</link.rule.ids></links><search><contributor>Umapathy, Snekhalatha</contributor><contributor>Kathirvelu, D</contributor><contributor>Karthik, Varshini</contributor><contributor>Damodaran, Vani</contributor><contributor>Kirubha, S P Angeline</contributor><creatorcontrib>Ahalya, R. K.</creatorcontrib><creatorcontrib>Snekhalatha, U.</creatorcontrib><title>Deep learning model for the estimation of Rheumatoid arthritis in hand radiographs</title><title>AIP conference proceedings</title><description>Rheumatoid Arthritis (RA) is an autoimmune illness that affects the hands and feet’s joints. The detection of RA is done using the scoring of radiographs and is a difficult task that requires trained clinicians. An automated system for diagnosing RA will eventually help physicians in better patient care and early detection. The study aims to implement an automated tool for the evaluation of RA disease. One hundred hand radiographs of RA and 100 normal hand radiographs were acquired for the study. ResNet50 and SqueezeNet models using the transfer learning approaches are used in this work. The accuracy obtained by the ResNet50 model is 89.8% and the SqueeNet model is 77.5% for the assessment of RA disease.</description><subject>Arthritis</subject><subject>Deep learning</subject><subject>Radiographs</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv0HAm7A12dnM7h6l_oWCUBS8hewm6aa0mzVJBb-9qy148zQ8-M28eY-QS85mnCHciBnjOUIJR2TCheBZiRyPyYSxusjyAt5PyVmMa8byuiyrCVneGTPQjVGhd_2Kbr02G2p9oKkz1MTktio531Nv6bIzu1F5p6kKqQsuuUhdTzvVaxqUdn4V1NDFc3Ji1Saai8OckreH-9f5U7Z4eXye3y6ygWOVsrZCAToXiLxoDNOmAeAKitwg1LrEWmjGa4CiKVoFWDZooQVjGRqjLatgSq72d4fgP3bjr3Ltd6EfLWVeMYFQFTWO1PWeiq1Lv1nkEMZU4Ut--iCFPPQlB23_gzmTPwX_LcA3NDJsvw</recordid><startdate>20230425</startdate><enddate>20230425</enddate><creator>Ahalya, R. K.</creator><creator>Snekhalatha, U.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230425</creationdate><title>Deep learning model for the estimation of Rheumatoid arthritis in hand radiographs</title><author>Ahalya, R. K. ; Snekhalatha, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-c8653d256614be0deb331a342e639d7695d019334b4ca367b6f3c3ef06eedf083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arthritis</topic><topic>Deep learning</topic><topic>Radiographs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahalya, R. K.</creatorcontrib><creatorcontrib>Snekhalatha, U.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahalya, R. K.</au><au>Snekhalatha, U.</au><au>Umapathy, Snekhalatha</au><au>Kathirvelu, D</au><au>Karthik, Varshini</au><au>Damodaran, Vani</au><au>Kirubha, S P Angeline</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep learning model for the estimation of Rheumatoid arthritis in hand radiographs</atitle><btitle>AIP conference proceedings</btitle><date>2023-04-25</date><risdate>2023</risdate><volume>2603</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Rheumatoid Arthritis (RA) is an autoimmune illness that affects the hands and feet’s joints. The detection of RA is done using the scoring of radiographs and is a difficult task that requires trained clinicians. An automated system for diagnosing RA will eventually help physicians in better patient care and early detection. The study aims to implement an automated tool for the evaluation of RA disease. One hundred hand radiographs of RA and 100 normal hand radiographs were acquired for the study. ResNet50 and SqueezeNet models using the transfer learning approaches are used in this work. The accuracy obtained by the ResNet50 model is 89.8% and the SqueeNet model is 77.5% for the assessment of RA disease.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0126373</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2603 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2805638496
source AIP Journals Complete
subjects Arthritis
Deep learning
Radiographs
title Deep learning model for the estimation of Rheumatoid arthritis in hand radiographs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20learning%20model%20for%20the%20estimation%20of%20Rheumatoid%20arthritis%20in%20hand%20radiographs&rft.btitle=AIP%20conference%20proceedings&rft.au=Ahalya,%20R.%20K.&rft.date=2023-04-25&rft.volume=2603&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0126373&rft_dat=%3Cproquest_scita%3E2805638496%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805638496&rft_id=info:pmid/&rfr_iscdi=true