LSTM-SN: complex text classifying with LSTM fusion social network
Whether it is an NLP (natural language processing) task or an NLU (natural language understanding) task, many methods are model oriented, ignoring the importance of data features. Such models did not perform well for many tasks based on feature loose, unbalanced tricky data including text classifica...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2023-06, Vol.79 (9), p.9558-9583 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9583 |
---|---|
container_issue | 9 |
container_start_page | 9558 |
container_title | The Journal of supercomputing |
container_volume | 79 |
creator | Wei, Wei Li, Xiaowan Zhang, Beibei Li, Linfeng Damaševičius, Robertas Scherer, Rafal |
description | Whether it is an NLP (natural language processing) task or an NLU (natural language understanding) task, many methods are model oriented, ignoring the importance of data features. Such models did not perform well for many tasks based on feature loose, unbalanced tricky data including text classification tasks. In this regard, this paper proposes a classification method called LSTM-SN (long-short term memory RNN fusion social network) based on extremely complex datasets. The approach condenses the characteristics of the dataset. LSTM combines with social network methods derived from specific datasets to complete the classification task, and then use complex network structure evolution methods to discover dynamic social attributes. The experimental results show that this method can overcome the shortcomings of traditional methods and achieve better classification results. Finally, a method to calculate the accuracy of fusion model is proposed. The research ideas of this paper have far-reaching significance in the domain of social data analysis and relation extraction. |
doi_str_mv | 10.1007/s11227-022-05034-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2805488184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805488184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9d97fca9b22263d0b16832a0618d7fa6c8c41595d954613a20c6ad287399ff233</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWmA3X105is1UVf1KBoWW2XCcuKWlS7FRp355AkNiY7nLOd6VDyCWHaw6Q3UTOETMGiAwSEJJ1R2TEk0wwkEoekxFoBKYSiafkLMY1AEiRiRGZzOaLZzZ_uaWu2WyrYk_bYt9SV9kYS38o6xXtyvadfmPU72LZ1DQ2rrQVrYu2a8LHOTnxtorFxe8dk7f7u8X0kc1eH56mkxlzguuW6Vxn3lm9RMRU5LDkqRJoIeUqz7xNnXKSJzrJdSJTLiyCS22OKhNae49CjMnVsLsNzeeuiK1ZN7tQ9y8NKkikUlzJnsKBcqGJMRTebEO5seFgOJjvVGZIZfpU5ieV6XpJDFLs4XpVhL_pf6wvQytqig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805488184</pqid></control><display><type>article</type><title>LSTM-SN: complex text classifying with LSTM fusion social network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wei, Wei ; Li, Xiaowan ; Zhang, Beibei ; Li, Linfeng ; Damaševičius, Robertas ; Scherer, Rafal</creator><creatorcontrib>Wei, Wei ; Li, Xiaowan ; Zhang, Beibei ; Li, Linfeng ; Damaševičius, Robertas ; Scherer, Rafal</creatorcontrib><description>Whether it is an NLP (natural language processing) task or an NLU (natural language understanding) task, many methods are model oriented, ignoring the importance of data features. Such models did not perform well for many tasks based on feature loose, unbalanced tricky data including text classification tasks. In this regard, this paper proposes a classification method called LSTM-SN (long-short term memory RNN fusion social network) based on extremely complex datasets. The approach condenses the characteristics of the dataset. LSTM combines with social network methods derived from specific datasets to complete the classification task, and then use complex network structure evolution methods to discover dynamic social attributes. The experimental results show that this method can overcome the shortcomings of traditional methods and achieve better classification results. Finally, a method to calculate the accuracy of fusion model is proposed. The research ideas of this paper have far-reaching significance in the domain of social data analysis and relation extraction.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-022-05034-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Compilers ; Computer Science ; Data analysis ; Datasets ; Interpreters ; Model accuracy ; Natural language ; Natural language processing ; Processor Architectures ; Programming Languages ; Social networks</subject><ispartof>The Journal of supercomputing, 2023-06, Vol.79 (9), p.9558-9583</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9d97fca9b22263d0b16832a0618d7fa6c8c41595d954613a20c6ad287399ff233</citedby><cites>FETCH-LOGICAL-c319t-9d97fca9b22263d0b16832a0618d7fa6c8c41595d954613a20c6ad287399ff233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-022-05034-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-022-05034-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Li, Xiaowan</creatorcontrib><creatorcontrib>Zhang, Beibei</creatorcontrib><creatorcontrib>Li, Linfeng</creatorcontrib><creatorcontrib>Damaševičius, Robertas</creatorcontrib><creatorcontrib>Scherer, Rafal</creatorcontrib><title>LSTM-SN: complex text classifying with LSTM fusion social network</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Whether it is an NLP (natural language processing) task or an NLU (natural language understanding) task, many methods are model oriented, ignoring the importance of data features. Such models did not perform well for many tasks based on feature loose, unbalanced tricky data including text classification tasks. In this regard, this paper proposes a classification method called LSTM-SN (long-short term memory RNN fusion social network) based on extremely complex datasets. The approach condenses the characteristics of the dataset. LSTM combines with social network methods derived from specific datasets to complete the classification task, and then use complex network structure evolution methods to discover dynamic social attributes. The experimental results show that this method can overcome the shortcomings of traditional methods and achieve better classification results. Finally, a method to calculate the accuracy of fusion model is proposed. The research ideas of this paper have far-reaching significance in the domain of social data analysis and relation extraction.</description><subject>Classification</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Interpreters</subject><subject>Model accuracy</subject><subject>Natural language</subject><subject>Natural language processing</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Social networks</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkyWmA3X105is1UVf1KBoWW2XCcuKWlS7FRp355AkNiY7nLOd6VDyCWHaw6Q3UTOETMGiAwSEJJ1R2TEk0wwkEoekxFoBKYSiafkLMY1AEiRiRGZzOaLZzZ_uaWu2WyrYk_bYt9SV9kYS38o6xXtyvadfmPU72LZ1DQ2rrQVrYu2a8LHOTnxtorFxe8dk7f7u8X0kc1eH56mkxlzguuW6Vxn3lm9RMRU5LDkqRJoIeUqz7xNnXKSJzrJdSJTLiyCS22OKhNae49CjMnVsLsNzeeuiK1ZN7tQ9y8NKkikUlzJnsKBcqGJMRTebEO5seFgOJjvVGZIZfpU5ieV6XpJDFLs4XpVhL_pf6wvQytqig</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wei, Wei</creator><creator>Li, Xiaowan</creator><creator>Zhang, Beibei</creator><creator>Li, Linfeng</creator><creator>Damaševičius, Robertas</creator><creator>Scherer, Rafal</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>LSTM-SN: complex text classifying with LSTM fusion social network</title><author>Wei, Wei ; Li, Xiaowan ; Zhang, Beibei ; Li, Linfeng ; Damaševičius, Robertas ; Scherer, Rafal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9d97fca9b22263d0b16832a0618d7fa6c8c41595d954613a20c6ad287399ff233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Interpreters</topic><topic>Model accuracy</topic><topic>Natural language</topic><topic>Natural language processing</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Li, Xiaowan</creatorcontrib><creatorcontrib>Zhang, Beibei</creatorcontrib><creatorcontrib>Li, Linfeng</creatorcontrib><creatorcontrib>Damaševičius, Robertas</creatorcontrib><creatorcontrib>Scherer, Rafal</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Wei</au><au>Li, Xiaowan</au><au>Zhang, Beibei</au><au>Li, Linfeng</au><au>Damaševičius, Robertas</au><au>Scherer, Rafal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSTM-SN: complex text classifying with LSTM fusion social network</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>79</volume><issue>9</issue><spage>9558</spage><epage>9583</epage><pages>9558-9583</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Whether it is an NLP (natural language processing) task or an NLU (natural language understanding) task, many methods are model oriented, ignoring the importance of data features. Such models did not perform well for many tasks based on feature loose, unbalanced tricky data including text classification tasks. In this regard, this paper proposes a classification method called LSTM-SN (long-short term memory RNN fusion social network) based on extremely complex datasets. The approach condenses the characteristics of the dataset. LSTM combines with social network methods derived from specific datasets to complete the classification task, and then use complex network structure evolution methods to discover dynamic social attributes. The experimental results show that this method can overcome the shortcomings of traditional methods and achieve better classification results. Finally, a method to calculate the accuracy of fusion model is proposed. The research ideas of this paper have far-reaching significance in the domain of social data analysis and relation extraction.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-022-05034-w</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2023-06, Vol.79 (9), p.9558-9583 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2805488184 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classification Compilers Computer Science Data analysis Datasets Interpreters Model accuracy Natural language Natural language processing Processor Architectures Programming Languages Social networks |
title | LSTM-SN: complex text classifying with LSTM fusion social network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSTM-SN:%20complex%20text%20classifying%20with%20LSTM%20fusion%20social%20network&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Wei,%20Wei&rft.date=2023-06-01&rft.volume=79&rft.issue=9&rft.spage=9558&rft.epage=9583&rft.pages=9558-9583&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-022-05034-w&rft_dat=%3Cproquest_cross%3E2805488184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805488184&rft_id=info:pmid/&rfr_iscdi=true |