LSTM-SN: complex text classifying with LSTM fusion social network

Whether it is an NLP (natural language processing) task or an NLU (natural language understanding) task, many methods are model oriented, ignoring the importance of data features. Such models did not perform well for many tasks based on feature loose, unbalanced tricky data including text classifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2023-06, Vol.79 (9), p.9558-9583
Hauptverfasser: Wei, Wei, Li, Xiaowan, Zhang, Beibei, Li, Linfeng, Damaševičius, Robertas, Scherer, Rafal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9583
container_issue 9
container_start_page 9558
container_title The Journal of supercomputing
container_volume 79
creator Wei, Wei
Li, Xiaowan
Zhang, Beibei
Li, Linfeng
Damaševičius, Robertas
Scherer, Rafal
description Whether it is an NLP (natural language processing) task or an NLU (natural language understanding) task, many methods are model oriented, ignoring the importance of data features. Such models did not perform well for many tasks based on feature loose, unbalanced tricky data including text classification tasks. In this regard, this paper proposes a classification method called LSTM-SN (long-short term memory RNN fusion social network) based on extremely complex datasets. The approach condenses the characteristics of the dataset. LSTM combines with social network methods derived from specific datasets to complete the classification task, and then use complex network structure evolution methods to discover dynamic social attributes. The experimental results show that this method can overcome the shortcomings of traditional methods and achieve better classification results. Finally, a method to calculate the accuracy of fusion model is proposed. The research ideas of this paper have far-reaching significance in the domain of social data analysis and relation extraction.
doi_str_mv 10.1007/s11227-022-05034-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2805488184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805488184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9d97fca9b22263d0b16832a0618d7fa6c8c41595d954613a20c6ad287399ff233</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWmA3X105is1UVf1KBoWW2XCcuKWlS7FRp355AkNiY7nLOd6VDyCWHaw6Q3UTOETMGiAwSEJJ1R2TEk0wwkEoekxFoBKYSiafkLMY1AEiRiRGZzOaLZzZ_uaWu2WyrYk_bYt9SV9kYS38o6xXtyvadfmPU72LZ1DQ2rrQVrYu2a8LHOTnxtorFxe8dk7f7u8X0kc1eH56mkxlzguuW6Vxn3lm9RMRU5LDkqRJoIeUqz7xNnXKSJzrJdSJTLiyCS22OKhNae49CjMnVsLsNzeeuiK1ZN7tQ9y8NKkikUlzJnsKBcqGJMRTebEO5seFgOJjvVGZIZfpU5ieV6XpJDFLs4XpVhL_pf6wvQytqig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805488184</pqid></control><display><type>article</type><title>LSTM-SN: complex text classifying with LSTM fusion social network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wei, Wei ; Li, Xiaowan ; Zhang, Beibei ; Li, Linfeng ; Damaševičius, Robertas ; Scherer, Rafal</creator><creatorcontrib>Wei, Wei ; Li, Xiaowan ; Zhang, Beibei ; Li, Linfeng ; Damaševičius, Robertas ; Scherer, Rafal</creatorcontrib><description>Whether it is an NLP (natural language processing) task or an NLU (natural language understanding) task, many methods are model oriented, ignoring the importance of data features. Such models did not perform well for many tasks based on feature loose, unbalanced tricky data including text classification tasks. In this regard, this paper proposes a classification method called LSTM-SN (long-short term memory RNN fusion social network) based on extremely complex datasets. The approach condenses the characteristics of the dataset. LSTM combines with social network methods derived from specific datasets to complete the classification task, and then use complex network structure evolution methods to discover dynamic social attributes. The experimental results show that this method can overcome the shortcomings of traditional methods and achieve better classification results. Finally, a method to calculate the accuracy of fusion model is proposed. The research ideas of this paper have far-reaching significance in the domain of social data analysis and relation extraction.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-022-05034-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Compilers ; Computer Science ; Data analysis ; Datasets ; Interpreters ; Model accuracy ; Natural language ; Natural language processing ; Processor Architectures ; Programming Languages ; Social networks</subject><ispartof>The Journal of supercomputing, 2023-06, Vol.79 (9), p.9558-9583</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9d97fca9b22263d0b16832a0618d7fa6c8c41595d954613a20c6ad287399ff233</citedby><cites>FETCH-LOGICAL-c319t-9d97fca9b22263d0b16832a0618d7fa6c8c41595d954613a20c6ad287399ff233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-022-05034-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-022-05034-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Li, Xiaowan</creatorcontrib><creatorcontrib>Zhang, Beibei</creatorcontrib><creatorcontrib>Li, Linfeng</creatorcontrib><creatorcontrib>Damaševičius, Robertas</creatorcontrib><creatorcontrib>Scherer, Rafal</creatorcontrib><title>LSTM-SN: complex text classifying with LSTM fusion social network</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Whether it is an NLP (natural language processing) task or an NLU (natural language understanding) task, many methods are model oriented, ignoring the importance of data features. Such models did not perform well for many tasks based on feature loose, unbalanced tricky data including text classification tasks. In this regard, this paper proposes a classification method called LSTM-SN (long-short term memory RNN fusion social network) based on extremely complex datasets. The approach condenses the characteristics of the dataset. LSTM combines with social network methods derived from specific datasets to complete the classification task, and then use complex network structure evolution methods to discover dynamic social attributes. The experimental results show that this method can overcome the shortcomings of traditional methods and achieve better classification results. Finally, a method to calculate the accuracy of fusion model is proposed. The research ideas of this paper have far-reaching significance in the domain of social data analysis and relation extraction.</description><subject>Classification</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Interpreters</subject><subject>Model accuracy</subject><subject>Natural language</subject><subject>Natural language processing</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Social networks</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkyWmA3X105is1UVf1KBoWW2XCcuKWlS7FRp355AkNiY7nLOd6VDyCWHaw6Q3UTOETMGiAwSEJJ1R2TEk0wwkEoekxFoBKYSiafkLMY1AEiRiRGZzOaLZzZ_uaWu2WyrYk_bYt9SV9kYS38o6xXtyvadfmPU72LZ1DQ2rrQVrYu2a8LHOTnxtorFxe8dk7f7u8X0kc1eH56mkxlzguuW6Vxn3lm9RMRU5LDkqRJoIeUqz7xNnXKSJzrJdSJTLiyCS22OKhNae49CjMnVsLsNzeeuiK1ZN7tQ9y8NKkikUlzJnsKBcqGJMRTebEO5seFgOJjvVGZIZfpU5ieV6XpJDFLs4XpVhL_pf6wvQytqig</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wei, Wei</creator><creator>Li, Xiaowan</creator><creator>Zhang, Beibei</creator><creator>Li, Linfeng</creator><creator>Damaševičius, Robertas</creator><creator>Scherer, Rafal</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>LSTM-SN: complex text classifying with LSTM fusion social network</title><author>Wei, Wei ; Li, Xiaowan ; Zhang, Beibei ; Li, Linfeng ; Damaševičius, Robertas ; Scherer, Rafal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9d97fca9b22263d0b16832a0618d7fa6c8c41595d954613a20c6ad287399ff233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Interpreters</topic><topic>Model accuracy</topic><topic>Natural language</topic><topic>Natural language processing</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Li, Xiaowan</creatorcontrib><creatorcontrib>Zhang, Beibei</creatorcontrib><creatorcontrib>Li, Linfeng</creatorcontrib><creatorcontrib>Damaševičius, Robertas</creatorcontrib><creatorcontrib>Scherer, Rafal</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Wei</au><au>Li, Xiaowan</au><au>Zhang, Beibei</au><au>Li, Linfeng</au><au>Damaševičius, Robertas</au><au>Scherer, Rafal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSTM-SN: complex text classifying with LSTM fusion social network</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>79</volume><issue>9</issue><spage>9558</spage><epage>9583</epage><pages>9558-9583</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Whether it is an NLP (natural language processing) task or an NLU (natural language understanding) task, many methods are model oriented, ignoring the importance of data features. Such models did not perform well for many tasks based on feature loose, unbalanced tricky data including text classification tasks. In this regard, this paper proposes a classification method called LSTM-SN (long-short term memory RNN fusion social network) based on extremely complex datasets. The approach condenses the characteristics of the dataset. LSTM combines with social network methods derived from specific datasets to complete the classification task, and then use complex network structure evolution methods to discover dynamic social attributes. The experimental results show that this method can overcome the shortcomings of traditional methods and achieve better classification results. Finally, a method to calculate the accuracy of fusion model is proposed. The research ideas of this paper have far-reaching significance in the domain of social data analysis and relation extraction.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-022-05034-w</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2023-06, Vol.79 (9), p.9558-9583
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2805488184
source SpringerLink Journals - AutoHoldings
subjects Classification
Compilers
Computer Science
Data analysis
Datasets
Interpreters
Model accuracy
Natural language
Natural language processing
Processor Architectures
Programming Languages
Social networks
title LSTM-SN: complex text classifying with LSTM fusion social network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSTM-SN:%20complex%20text%20classifying%20with%20LSTM%20fusion%20social%20network&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Wei,%20Wei&rft.date=2023-06-01&rft.volume=79&rft.issue=9&rft.spage=9558&rft.epage=9583&rft.pages=9558-9583&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-022-05034-w&rft_dat=%3Cproquest_cross%3E2805488184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805488184&rft_id=info:pmid/&rfr_iscdi=true